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1 Overview

LEA (Frichot and Francois, 2015) is an R package dedicated to landscape ge-
nomics and ecological association tests. LEA can run analyses of population
structure and genome scans for local adaptation. It includes statistical meth-
ods for estimating ancestry coefficients from large genotypic matrices and
evaluating the number of ancestral populations (snmf, pca); and identifying
genetic polymorphisms that exhibit high correlation with some environmen-
tal gradient or with the variables used as proxies for ecological pressures
(lfmm), and controlling the false discovery rate. LEA is mainly based on
optimized C programs that can scale with the dimension of very large data
sets.
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2 Introduction

The goal of this tutorial is to give an overview of LEA functionalities.

One specifity of the LEA package is to be able to handle very large popula-
tion genetic data sets. Genomic data are never loaded into the R memory,
and they are processed using fast C codes wrapped into the R code. For this
reason, most of the LEA functions use character strings containing paths to
input files as arguments.

As some functions may take several hours for very large datasets, nobody
wants to erase their results when quitting R. That is why output files are
written into text files that can be read by LEA after each run. We advise
creating a working directory containing your data when you start using LEA.
It is assumed that two files with the same name and a different extension in
the same directory contain the same data matrix in different formats.

> # creation of a directory for the LEA analyses

> dir.create("LEA_analyses")

> # set this new directory as the working directory

> setwd("LEA_analyses")

2.1 Preparing the data

The R package LEA can handle several classical formats for input files of
genotypic matrices. More specifically, the package uses the lfmm and geno

formats, and provides functions to convert from ped, vcf, and ancestrymap

formats. While the lfmm and geno formats usually encode SNP data, those
formats can also be used for coding amplification fragment length polymor-
phisms and microsatellite markers. In addition to genotypic matrices, LEA
can also process allele frequency data when they are encoded in the lfmm

formats. Ecological variables must be formatted in the env format used by
the computer program lfmm (Frichot et al., 2013).

The LEA package can handle missing data, but the algorithm used for geno-
type imputation is basic. We encourage users having more than 10 miss-
ing genotypes in their data to input the missing data issue by using ma-
trix completion or genotype imputation programs such as IMPUTE2 or
MENDEL-IMPUTE before starting their analyses with LEA. Ecological data
must be prepared using the env format. To decide which variables should be
used among a large number of ecological indicators (eg, climatic variables),
we suggest that users summarize their data using linear combinations of
those indicators. Considering principal component analysis (or similar ap-
proaches) and using the first components as new ecological variables is one
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of these approaches.

The tutorial data set is composed of a genotypic matrix called tutorial.R
with 50 individuals for 400 SNPs. The last 50 SNPs are correlated with
an environmental variable called tutorial.C. This dataset is a subset of the
dataset displayed in the note associated with the package (Frichot and Fran-
cois, 2015).

> library(LEA)

> # Creation of the genotypic file "genotypes.lfmm"

> # with 400 SNPs for 50 individuals.

> data("tutorial")

> # in the lfmm format

> write.lfmm(tutorial.R, "genotypes.lfmm")

> # in the geno format

> write.geno(tutorial.R, "genotypes.geno")

> # creation of the environment file, gradient.env.

> # It contains 1 environmental variable for 50 individuals.

> write.env(tutorial.C, "gradients.env")

3 Analysis of population structure

The R package LEA implements two classical approaches for the estimation
of population genetic structure: principal component analysis (pca) and
admixture analysis (Patterson et al., 2006; Pritchard et al., 2000). The
algorithms programmed in LEA are improved versions of pca and admixture
analysis able to process very large genotypic matrices efficiently.

3.1 Principal Component Analysis

The LEA function pca computes the scores of a pca for a genotypic matrix,
and returns a scree-plot for the eigenvalues of the sample covariance matrix.
Using pca, an object of class pcaProject is created. This object contains a
path to the files storing eigenvectors, eigenvalues and projections.

> # run of pca

> # Available options, K (the number of PCs calculated),

> # center and scale.

> # Creation of genotypes.pcaProject - the pcaProject object.

> # a directory genotypes.pca containing:

> # Create files: genotypes.eigenvalues - eigenvalues,

> # genotypes.eigenvectors - eigenvectors,

> # genotypes.sdev - standard deviations,

> # genotypes.projections - projections,
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> # Create a pcaProject object: pc.

> pc = pca("genotypes.lfmm", scale = TRUE)

The number of significant components can be evaluated using graphical
methods based on the scree-plot (Figure 1) or computing Tracy-Widom tests
with the LEA function tracy.widom (Patterson et al., 2006).

> # Perfom Tracy-Widom tests on all eigenvalues.

> # create file: tuto.tracyWidom - tracy-widom test information.

> tw = tracy.widom(pc)

> # display the p-values for the Tracy-Widom tests.

> tw$pvalues[1:10]

[1] 8.000e-09 8.000e-09 8.000e-09 1.503e-04 3.152e-02 4.215e-01 6.565e-01

[8] 6.859e-01 6.738e-01 9.363e-01

> # plot the percentage of variance explained by each component

> plot(tw$percentage)
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Figure 1: plot of the percentage of variance explained by each component
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3.2 Inference of individual admixture coefficients using snmf

Similar to Bayesian clustering programs, LEA includes an R function to esti-
mate individual admixture coefficients from the genotypic matrix (Pritchard
et al., 2000; François and Durand, 2010). Assuming K ancestral populations,
the R function snmf provides least-squares estimates of ancestry proportions
(Frichot et al., 2014).

> # main options, K: (the number of ancestral populations),

> # entropy: calculate the cross-entropy criterion,

> # CPU: the number of CPUs.

>

> # Runs with K between 1 and 10 with cross-entropy and 10 repetitions.

> project = NULL

> project = snmf("genotypes.geno", K=1:10, entropy = TRUE, repetitions = 10,

+ project = "new")

The snmf function also estimates an entropy criterion that evaluates the
quality of fit of the statistical model to the data using a cross-validation
technique (Figure 2). The entropy criterion can help choosing the number
of ancestral populations that best explains the genotypic data (Alexander
and Lange, 2011; Frichot et al., 2014).

> # get the cross-entropy of each run for K = 4

> ce = cross.entropy(project, K = 4)

> # select the run with the lowest cross-entropy

> best = which.min(ce)

The number of ancestral population is closely linked to the number of prin-
cipal components that explain variation in the genomic data. Both numbers
can help determining the number of latent factors when correcting for con-
founding effects due to population structure in ecological association tests.

4 Ecological associations tests using lfmm

The R package LEA performs ecological association tests based on latent
factor mixed models (LFMM, Frichot et al. 2013). Let G denote the genotypic
matrix, storing allele frequencies for each individual at each locus, and let
X denote a set of d ecological variables. LFMMs consider genotypic matrix
entries as response variables in a linear regression model

Gi` = µ` + βT` Xi + UT
i V` + εi` , (1)

where µ` is a locus specific effect, β` is a d-dimensional vector of regression
coefficients, Ui contains K latent factors, and V` contains their correspond-
ing loadings (i stands for an individual and ` for a locus). The residual
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> # plot cross-entropy criterion of all runs of the project

> plot(project, lwd = 5, col = "red", pch=1)
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Figure 2: Value of the cross-entropy criterion as a function of the number
of factors in snmf

terms, εi`, are statistically independent Gaussian variables with mean zero
and variance σ2. In latent factor models, associations between ecological
variables and allele frequencies can be tested while estimating unobserved
latent factors that model confounding effects. In principle, the latent factors
include levels of population structure due to shared demographic history or
background genetic variation. After correction for confounding effects, sig-
nificant association between allele frequencies and an observed ecological
variable is often interpreted as evidence for selection at a particular locus.

The run. The lfmm program is based on a stochastic algorithm (MCMC)
which cannot provide exact results. We recommend using large number of
cycles (e.g., -i 10000) and the burn-in period should set at least to one-
half of the total number of cycles (-b 5000). We have noticed that the
program results are sensitive to the run-length parameter when data sets
have relatively small sizes (eg, a few hundreds of individuals, a few thousands
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of loci). We recommend increasing the burn-in period and the total number
of cycles in this situation.

> # main options, K: (the number of latent factors),

> # CPU: the number of CPUs.

>

> # Runs with K = 6 and 5 repetitions.

> # The runs are composed of 6000 iterations including 3000 iterations

> # for burnin.

> # around 20 seconds per run.

> project = NULL

> project = lfmm("genotypes.lfmm", "gradients.env", K = 6, repetitions = 5,

+ project = "new")

Deciding the number of latent factors. Deciding an appropriate value
for the number of latent factors in lfmm can be based on the analysis of his-
tograms of test p-values. Here, the objective is to control the false discovery
rate while keeping reasonable power to reject the null hypothesis. To choose
the number of factors, we suggest using the genomic inflation factor. Ac-
cording to Devlin and Roeder (1999), this quantity is defined as

λ = median(z2)/0.456 .

The inflation factor usually decreases with increasing values of K. To com-
pute the genomic inflation factor, we recommend using several runs for each
value of K and taking the median or the mean of the λ values obtained from
the above formula (use 5 to 10 runs, see our script below). Choosing values
of K for which the estimate of λ is close to (or slightly below) 1.0 warrants
that the FDR can be controlled efficiently.

Testing all K values in a large range, from 1 to 20 for example, is gener-
ally useless. A careful analysis of population structure and estimates of the
number of ancestral populations contributing to the genetic data indicates
the range of values to be explored. If for example the snmf or ADMIXTURE

programs estimate 5 ancestral populations, then running lfmm K = 4 − 7
often provides inflation factors close to 1.0.

Combining z-scores obtained from multiple runs. We suggest using
the Fisher-Stouffer or a similar method to combine z-scores from multiple
runs. In practice, we found that using the median z-scores of 5-10 runs
and re-adjusting the p-values afterwards increase the power of lfmm tests.
This can be done by using the following sequence of R commands. We can
compute ajusted p-values using the the following commands.

Using a standard R command, z-scores were combined using the median
value.
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> # get the zscores of each run for K = 6

> zs = z.scores(project, K = 6)

> # Combine the z-scores using the Stouffer method

> zs.stouffer = apply(zs, MARGIN = 1, median)

A genomic inflation factor was computed.

> lambda = median(zs^2)/.456

p-values were adjusted as follows

> # calculate adjusted p-values

> cp.values = pchisq(zs.stouffer^2/lambda, df = 1, lower = FALSE)

To adjust p-values for multiple testing issues, we used the Benjamini-Hochberg
procedure with expected levels of FDR equal to q = 5%, 10%, 15% and 20%
respectively (Benjamini and Hochberg, 1995). The lists of candidate loci is
given by

> for (alpha in c(.05,.1,.15,.2)) {

+ # expected FDR

+ print(paste("expected FDR:", alpha))

+ L = length(cp.values)

+ # return a list of candidates with an expected FDR of alpha.

+ w = which(sort(cp.values) < alpha * (1:L) / L)

+ candidates = order(cp.values)[w]

+

+ # estimated FDR and True Positif

+ estimated.FDR = length(which(candidates <= 350))/length(candidates)

+ estimated.TP = length(which(candidates > 350))/50

+ print(paste("FDR:", estimated.FDR, "True Positive:", estimated.TP))

+ }

[1] "expected FDR: 0.05"

[1] "FDR: 0.0384615384615385 True Positive: 0.5"

[1] "expected FDR: 0.1"

[1] "FDR: 0.0769230769230769 True Positive: 0.72"

[1] "expected FDR: 0.15"

[1] "FDR: 0.0888888888888889 True Positive: 0.82"

[1] "expected FDR: 0.2"

[1] "FDR: 0.0833333333333333 True Positive: 0.88"

5 Session info

Here is the output of sessionInfo on the system on which this document was
compiled:
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� R version 3.1.2 (2014-10-31), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

� Loaded via a namespace (and not attached): tools 3.1.2
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