## ----echo=FALSE, results='hide',message=FALSE,warning=FALSE,error=FALSE---- library(ChemmineR) library(knitcitations) RefManageR:::BibOptions(style="markdown",no.print.fields=c("doi")) sapply(read.bibtex(file="references.bib"),record_as_cited) ## ----eval=FALSE---------------------------------------------------------- ## source("http://bioconductor.org/biocLite.R") # Sources the biocLite.R installation script. ## biocLite("ChemmineR") # Installs the package. ## ## ----eval=TRUE, tidy=FALSE----------------------------------------------- library("ChemmineR") # Loads the package ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## library(help="ChemmineR") # Lists all functions and classes ## vignette("ChemmineR") # Opens this PDF manual from R ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(sdfsample) sdfset <- sdfsample sdfset # Returns summary of SDFset sdfset[1:4] # Subsetting of object sdfset[[1]] # Returns summarized content of one SDF ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## view(sdfset[1:4]) # Returns summarized content of many SDFs, not printed here ## as(sdfset[1:4], "list") # Returns complete content of many SDFs, not printed here ## ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfset <- read.SDFset("http://faculty.ucr.edu/ tgirke/Documents/R_BioCond/Samples/sdfsample.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## header(sdfset[1:4]) # Not printed here ## ----eval=TRUE, tidy=FALSE----------------------------------------------- header(sdfset[[1]]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## atomblock(sdfset[1:4]) # Not printed here ## ----eval=TRUE, tidy=FALSE----------------------------------------------- atomblock(sdfset[[1]])[1:4,] ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## bondblock(sdfset[1:4]) # Not printed here ## ----eval=TRUE, tidy=FALSE----------------------------------------------- bondblock(sdfset[[1]])[1:4,] ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## datablock(sdfset[1:4]) # Not printed here ## ----eval=TRUE, tidy=FALSE----------------------------------------------- datablock(sdfset[[1]])[1:4] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cid(sdfset)[1:4] # Returns IDs from SDFset object sdfid(sdfset)[1:4] # Returns IDs from SD file header block unique_ids <- makeUnique(sdfid(sdfset)) cid(sdfset) <- unique_ids ## ----eval=TRUE, tidy=FALSE----------------------------------------------- blockmatrix <- datablock2ma(datablocklist=datablock(sdfset)) # Converts data block to matrix numchar <- splitNumChar(blockmatrix=blockmatrix) # Splits to numeric and character matrix numchar[[1]][1:2,1:2] # Slice of numeric matrix numchar[[2]][1:2,10:11] # Slice of character matrix ## ----eval=TRUE, tidy=FALSE----------------------------------------------- propma <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset)) propma[1:4, ] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- datablock(sdfset) <- propma datablock(sdfset[1]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## grepSDFset("650001", sdfset, field="datablock", mode="subset") # Returns summary view of matches. Not printed here. ## ----eval=TRUE, tidy=FALSE----------------------------------------------- grepSDFset("650001", sdfset, field="datablock", mode="index") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE) ## ----plotstruct, eval=TRUE, tidy=FALSE----------------------------------- plot(sdfset[1:4], print=FALSE) # Plots structures to R graphics device ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdf.visualize(sdfset[1:4]) # Compound viewing in web browser ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## apset <- sdf2ap(sdfset) # Generate atom pair descriptor database for searching ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(apset) # Load sample apset data provided by library. cmp.search(apset, apset[1], type=3, cutoff = 0.3, quiet=TRUE) # Search apset database with single compound. cmp.cluster(db=apset, cutoff = c(0.65, 0.5), quiet=TRUE)[1:4,] # Binning clustering using variable similarity cutoffs. ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## convertFormatFile("SML","SDF","mycompound.sml","mycompound.sdf") ## sdfset=read.SDFset("mycompound.sdf") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- propOB(sdfset[1]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fingerprintOB(sdfset,"FP2") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- #count rotable bonds smartsSearchOB(sdfset[1:5],"[!$(*#*)&!D1]-!@[!$(*#*)&!D1]",uniqueMatches=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- exactMassOB(sdfset[1:5]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- sdfset2 = regenerateCoords(sdfset[1:5]) plot(sdfset[1], regenCoords=TRUE,print=FALSE) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdf3D = generate3DCoords(sdfset[1]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- canonicalSdf= canonicalize(sdfset[1]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- mapping = canonicalNumbering(sdfset[1]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfset <- read.SDFset("http://faculty.ucr.edu/ tgirke/Documents/R_BioCond/Samples/sdfsample.sdf") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(sdfsample) # Loads the same SDFset provided by the library sdfset <- sdfsample valid <- validSDF(sdfset) # Identifies invalid SDFs in SDFset objects sdfset <- sdfset[valid] # Removes invalid SDFs, if there are any ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfstr <- read.SDFstr("http://faculty.ucr.edu/ tgirke/Documents/R_BioCond/Samples/sdfsample.sdf") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- sdfstr <- as(sdfset, "SDFstr") sdfstr as(sdfstr, "SDFset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## data(smisample); smiset <- smisample ## write.SMI(smiset[1:4], file="sub.smi") ## smiset <- read.SMIset("sub.smi") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(smisample) # Loads the same SMIset provided by the library smiset <- smisample smiset view(smiset[1:2]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cid(smiset[1:4]) smi <- as.character(smiset[1:2]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- as(smi, "SMIset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset[1:4], file="sub.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset)) ## datablock(sdfset) <- props ## write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdf2str(sdf=sdfset[[1]], sig=TRUE, cid=TRUE) # Uses default components ## sdf2str(sdf=sdfset[[1]], head=letters[1:4], db=NULL) # Uses custom components for header and data block ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL) ## write.SDF(sdfstr[1:4], file="sub.sdf") ## cat(unlist(as(sdfstr[1:4], "list")), file="sub.sdf", sep="") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## data(smisample); smiset <- smisample # Sample data set ## ## write.SMI(smiset[1:4], file="sub.smi", cid=TRUE) write.SMI(smiset[1:4], file="sub.smi", cid=FALSE) ## ----sdf2smiles, eval=FALSE, tidy=FALSE---------------------------------- ## data(sdfsample); ## sdfset <- sdfsample[1] ## smiles <- sdf2smiles(sdfset) ## smiles ## ----smiles2sdf, eval=FALSE, tidy=FALSE---------------------------------- ## sdf <- smiles2sdf("CC(=O)OC1=CC=CC=C1C(=O)O") ## view(sdf) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfStr <- convertFormat("SMI","SDF","CC(=O)OC1=CC=CC=C1C(=O)O_name") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## convertFormatFile("SMI","SDF","test.smiles","test.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset, "test.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfstr <- read.SDFstr("test.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDFsplit(x=sdfstr, filetag="myfile", nmol=10) # 'nmol' defines the number of molecules to write to each file ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDFsplit(x=sdfset, filetag="myfile", nmol=10) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## write.SDF(sdfset, "test.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## desc <- function(sdfset) ## cbind(SDFID=sdfid(sdfset), ## # datablock2ma(datablocklist=datablock(sdfset)), ## MW=MW(sdfset), ## groups(sdfset), APFP=desc2fp(x=sdf2ap(sdfset), descnames=1024, ## type="character"), AP=sdf2ap(sdfset, type="character"), rings(sdfset, ## type="count", upper=6, arom=TRUE) ) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfStream(input="test.sdf", output="matrix.xls", fct=desc, Nlines=1000) # 'Nlines': number of lines to read from input SD File at a time ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfStream(input="test.sdf", output="matrix2.xls", append=FALSE, fct=desc, Nlines=1000, startline=950) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## indexDF <- read.delim("matrix.xls", row.names=1)[,1:4] ## indexDFsub <- indexDF[indexDF$MW < 400, ] # Selects molecules with MW < 400 ## sdfset <- read.SDFindex(file="test.sdf", index=indexDFsub, type="SDFset") # Collects results in 'SDFset' container ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## read.SDFindex(file="test.sdf", index=indexDFsub, type="file", ## outfile="sub.sdf") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## apset <- read.AP(x="matrix.xls", type="ap", colid="AP") ## apfp <- read.AP(x="matrix.xls", type="fp", colid="APFP") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## apset <- read.AP(x=sdf2ap(sdfset[1:20], type="character"), type="ap") ## fpchar <- desc2fp(sdf2ap(sdfset[1:20]), descnames=1024, type="character") ## fpset <- as(fpchar, "FPset") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(sdfsample) #create and initialize a new SQLite database conn <- initDb("test.db") # load data and compute 3 features: molecular weight, with the MW function, # and counts for RINGS and AROMATIC, as computed by rings, which # returns a data frame itself. ids<-loadSdf(conn,sdfsample, function(sdfset) data.frame(rings(sdfset,type="count",upper=6, arom=TRUE),propOB(sdfset)) ) #list features in the database: print(listFeatures(conn)) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## setPriorities(conn,forestSizePriorities) ## ------------------------------------------------------------------------ results = findCompounds(conn,"mw",c("mw < 300")) message("found ",length(results)) ## ------------------------------------------------------------------------ results = findCompounds(conn,c("mw","aromatic"),c("mw < 300","aromatic >= 2")) message("found ",length(results)) ## ------------------------------------------------------------------------ results = findCompounds(conn,"formula",c("formula like '%C21%'")) message("found ",length(results)) ## ------------------------------------------------------------------------ allIds = getAllCompoundIds(conn) message("found ",length(allIds)) ## ------------------------------------------------------------------------ #get the names of the compounds: names = getCompoundNames(conn,results) #if the name order is important set keepOrder=TRUE #It will take a little longer though names = getCompoundNames(conn,results,keepOrder=TRUE) # get the whole set of compounds compounds = getCompounds(conn,results) #in order: compounds = getCompounds(conn,results,keepOrder=TRUE) #write results directly to a file: compounds = getCompounds(conn,results,filename=file.path(tempdir(),"results.sdf")) ## ------------------------------------------------------------------------ getCompoundFeatures(conn,results[1:5],c("mw","logp","formula")) #write results directly to a CSV file (reduces memory usage): getCompoundFeatures(conn,results[1:5],c("mw","logp","formula"),filename="features.csv") #maintain input order in output: print(results[1:5]) getCompoundFeatures(conn,results[1:5],c("mw","logp","formula"),keepOrder=TRUE) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## ## view(sdfset[1:4]) # Summary view of several molecules ## ## length(sdfset) # Returns number of molecules ## sdfset[[1]] # Returns single molecule from SDFset as SDF object ## ## sdfset[[1]][[2]] # Returns atom block from first compound as matrix ## ## sdfset[[1]][[2]][1:4,] ## c(sdfset[1:4], sdfset[5:8]) # Concatenation of several SDFsets ## ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## grepSDFset("650001", sdfset, field="datablock", mode="subset") # To return index, set mode="index") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfid(sdfset[1:4]) # Retrieves CMP IDs from Molecule Name field in header block. ## cid(sdfset[1:4]) # Retrieves CMP IDs from ID slot in SDFset. ## unique_ids <- makeUnique(sdfid(sdfset)) # Creates unique IDs by appending a counter to duplicates. ## cid(sdfset) <- unique_ids # Assigns uniquified IDs to ID slot ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## view(sdfset[c("650001", "650012")]) ## view(sdfset[4:1]) ## mylog <- cid(sdfset) ## view(sdfset[mylog]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## atomblock(sdf); sdf[[2]]; ## sdf[["atomblock"]] # All three methods return the same component ## ## header(sdfset[1:4]) ## atomblock(sdfset[1:4]) ## bondblock(sdfset[1:4]) ## datablock(sdfset[1:4]) ## header(sdfset[[1]]) ## atomblock(sdfset[[1]]) ## bondblock(sdfset[[1]]) ## datablock(sdfset[[1]]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfset[[1]][[2]][1,1] <- 999 ## atomblock(sdfset)[1] <- atomblock(sdfset)[2] ## datablock(sdfset)[1] <- datablock(sdfset)[2] ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## datablock(sdfset) <- as.matrix(iris[1:100,]) ## view(sdfset[1:4]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## as(sdfstr[1:2], "list") as(sdfstr[[1]], "SDF") ## as(sdfstr[1:2], "SDFset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdfcomplist <- as(sdf, "list") sdfcomplist <- ## as(sdfset[1:4], "list"); as(sdfcomplist[[1]], "SDF") sdflist <- ## as(sdfset[1:4], "SDF"); as(sdflist, "SDFset") as(sdfset[[1]], "SDFstr") ## as(sdfset[[1]], "SDFset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## as(sdfset[1:4], "SDF") as(sdfset[1:4], "list") as(sdfset[1:4], "SDFstr") ## ----boxplot, eval=TRUE, tidy=FALSE-------------------------------------- propma <- atomcountMA(sdfset, addH=FALSE) boxplot(propma, col="blue", main="Atom Frequency") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## boxplot(rowSums(propma), main="All Atom Frequency") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(atomprop) atomprop[1:4,] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- MW(sdfset[1:4], addH=FALSE) MF(sdfset[1:4], addH=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- groups(sdfset[1:4], groups="fctgroup", type="countMA") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- propma <- data.frame(MF=MF(sdfset, addH=FALSE), MW=MW(sdfset, addH=FALSE), Ncharges=sapply(bonds(sdfset, type="charge"), length), atomcountMA(sdfset, addH=FALSE), groups(sdfset, type="countMA"), rings(sdfset, upper=6, type="count", arom=TRUE)) propma[1:4,] ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## datablock(sdfset) <- propma # Works with all SDF components ## datablock(sdfset)[1:4] ## test <- apply(propma[1:4,], 1, function(x) ## data.frame(col=colnames(propma), value=x)) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## datablocktag(sdfset, tag="PUBCHEM_NIST_INCHI") ## datablocktag(sdfset, ## tag="PUBCHEM_OPENEYE_CAN_SMILES") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## blockmatrix <- datablock2ma(datablocklist=datablock(sdfset)) # Converts data block to matrix ## numchar <- splitNumChar(blockmatrix=blockmatrix) # Splits matrix to numeric matrix and character matrix ## numchar[[1]][1:4,]; numchar[[2]][1:4,] ## # Splits matrix to numeric matrix and character matrix ## ----contable, eval=FALSE, fig.keep='none', tidy=FALSE------------------- ## conMA(sdfset[1:2], ## exclude=c("H")) # Create bond matrix for first two molecules in sdfset ## ## conMA(sdfset[[1]], exclude=c("H")) # Return bond matrix for first molecule ## plot(sdfset[1], atomnum = TRUE, noHbonds=FALSE , no_print_atoms = "", atomcex=0.8) # Plot its structure with atom numbering ## rowSums(conMA(sdfset[[1]], exclude=c("H"))) # Return number of non-H bonds for each atom ## ----eval=TRUE, tidy=FALSE----------------------------------------------- bonds(sdfset[[1]], type="bonds")[1:4,] bonds(sdfset[1:2], type="charge") bonds(sdfset[1:2], type="addNH") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- ringatoms <- rings(sdfset[1], upper=Inf, type="all", arom=FALSE, inner=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- atomindex <- as.numeric(gsub(".*_", "", unique(unlist(ringatoms)))) plot(sdfset[1], print=FALSE, colbonds=atomindex) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- plot(sdfset[1], print=FALSE, atomnum=TRUE, no_print_atoms="H") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- rings(sdfset[1], upper=Inf, type="all", arom=TRUE, inner=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- rings(sdfset[1], upper=6, type="arom", arom=TRUE, inner=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- rings(sdfset[1:4], upper=Inf, type="count", arom=TRUE, inner=TRUE) ## ----plotstruct2, eval=TRUE, tidy=FALSE---------------------------------- data(sdfsample) sdfset <- sdfsample plot(sdfset[1:4], regenCoords=TRUE,print=FALSE) # 'print=TRUE' returns SDF summaries ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## plot(sdfset[1:4], griddim=c(2,2), print_cid=letters[1:4], print=FALSE, ## noHbonds=FALSE) ## ----plotstruct3, eval=TRUE, tidy=FALSE---------------------------------- plot(sdfset["CMP1"], atomnum = TRUE, noHbonds=F , no_print_atoms = "", atomcex=0.8, sub=paste("MW:", MW(sdfsample["CMP1"])), print=FALSE) ## ----plotstruct4, eval=TRUE, tidy=FALSE---------------------------------- plot(sdfset[1], print=FALSE, colbonds=c(22,26,25,3,28,27,2,23,21,18,8,19,20,24)) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## sdf.visualize(sdfset[1:4]) ## ----plotmcs, eval=TRUE, tidy=FALSE-------------------------------------- library(fmcsR) data(fmcstest) # Loads test sdfset object test <- fmcs(fmcstest[1], fmcstest[2], au=2, bu=1) # Searches for MCS with mismatches plotMCS(test) # Plots both query compounds with MCS in color ## ----eval=TRUE, tidy=FALSE----------------------------------------------- ap <- sdf2ap(sdfset[[1]]) # For single compound ap ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## apset <- sdf2ap(sdfset) ## # For many compounds. ## ----eval=TRUE, tidy=FALSE----------------------------------------------- view(apset[1:4]) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## cid(apset[1:4]) # Compound IDs ## ap(apset[1:4]) # Atom pair ## descriptors ## db.explain(apset[1]) # Return atom pairs in human readable format ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## apset2descdb(apset) # Returns old list-style AP database ## tmp <- as(apset, "list") # Returns list ## as(tmp, "APset") # Converts list back to APset ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## save(sdfset, file = "sdfset.rda", compress = TRUE) ## load("sdfset.rda") save(apset, file = "apset.rda", compress = TRUE) ## load("apset.rda") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cmp.similarity(apset[1], apset[2]) cmp.similarity(apset[1], apset[1]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cmp.search(apset, apset["650065"], type=3, cutoff = 0.3, quiet=TRUE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cmp.search(apset, apset["650065"], type=1, cutoff = 0.3, quiet=TRUE) cmp.search(apset, apset["650065"], type=2, cutoff = 0.3, quiet=TRUE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- showClass("FPset") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(apset) fpset <- desc2fp(apset) view(fpset[1:2]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpset[1:4] # behaves like a list fpset[[1]] # returns FP object length(fpset) # number of compounds ENDCOMMENT cid(fpset) # returns compound ids fpset[10] <- 0 # replacement of 10th fingerprint to all zeros cid(fpset) <- 1:length(fpset) # replaces compound ids c(fpset[1:4], fpset[11:14]) # concatenation of several FPset objects ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpma <- as.matrix(fpset) # coerces FPset to matrix as(fpma, "FPset") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpchar <- as.character(fpset) # coerces FPset to character strings as(fpchar, "FPset") # construction of FPset class from character vector ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpSim(fpset[1], fpset, method="Tanimoto", cutoff=0.4, top=4) ## ----eval=TRUE,tidy=FALSE------------------------------------------------ fold(fpset) # fold each FP once fold(fpset, count=2) #fold each FP twice fold(fpset, bits=128) #fold each FP down to 128 bits fold(fpset[[1]]) # fold an individual FP fptype(fpset) # get type of FPs numBits(fpset) # get the number of bits of each FP foldCount(fold(fpset)) # the number of times an FP or FPset has been folded ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## data(sdfsample) ## sdfset <- sdfsample[1:10] ## apset <- sdf2ap(sdfset) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpset <- desc2fp(apset, descnames=1024, type="FPset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpset1024 <- names(rev(sort(table(unlist(as(apset, "list")))))[1:1024]) ## fpset <- desc2fp(apset, descnames=fpset1024, type="FPset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpchar <- desc2fp(x=apset, ## descnames=1024, type="character") fpchar <- as.character(fpset) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpma <- as.matrix(fpset) ## fpset <- as(fpma, "FPset") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpSim(fpset[1], fpset, method="Tanimoto") ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## fpSim(fpset[1], fpset, method="Tversky", cutoff=0.4, top=4, alpha=0.5, beta=1) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## myfct <- function(a, b, c, d) c/(a+b+c+d) ## fpSim(fpset[1], fpset, method=myfct) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## simMAap <- sapply(cid(apfpset), function(x) fpSim(x=apfpset[x], apfpset, sorted=FALSE)) ## hc <- hclust(as.dist(1-simMAap), method="single") ## plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- params = genParameters(fpset) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpSim(fpset[[1]],fpset,top=10,parameters=params) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpSim(fpset[[1]],fpset,cutoff=0.04,scoreType="evalue",parameters=params) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cid(sdfset) <- sdfid(sdfset) fpset <- fp2bit(sdfset, type=1) fpset <- fp2bit(sdfset, type=2) fpset <- fp2bit(sdfset, type=3) fpset ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpSim(fpset[1], fpset[2]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpSim(fpset["650065"], fpset, method="Tanimoto", cutoff=0.6, top=6) ## ----search_result, eval=TRUE, tidy=FALSE-------------------------------- cid(sdfset) <- cid(apset) # Assure compound name consistency among objects. plot(sdfset[names(cmp.search(apset, apset["650065"], type=2, cutoff=4, quiet=TRUE))], print=FALSE) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## similarities <- cmp.search(apset, apset[1], type=3, cutoff = 10) ## sdf.visualize(sdfset[similarities[,1]]) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cmp.duplicated(apset, type=1)[1:4] # Returns AP duplicates as logical vector cmp.duplicated(apset, type=2)[1:4,] # Returns AP duplicates as data frame ## ----duplicates, eval=TRUE, tidy=FALSE----------------------------------- plot(sdfset[c("650059","650060", "650065", "650066")], print=FALSE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- apdups <- cmp.duplicated(apset, type=1) sdfset[which(!apdups)]; apset[which(!apdups)] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- count <- table(datablocktag(sdfset, tag="PUBCHEM_NIST_INCHI")) count <- table(datablocktag(sdfset, tag="PUBCHEM_OPENEYE_CAN_SMILES")) count <- table(datablocktag(sdfset, tag="PUBCHEM_MOLECULAR_FORMULA")) count[1:4] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- clusters <- cmp.cluster(db=apset, cutoff = c(0.7, 0.8, 0.9), quiet = TRUE) clusters[1:12,] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- fpset <- desc2fp(apset) clusters2 <- cmp.cluster(fpset, cutoff=c(0.5, 0.7, 0.9), method="Tanimoto", quiet=TRUE) clusters2[1:12,] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- clusters3 <- cmp.cluster(fpset, cutoff=c(0.5, 0.7, 0.9), method="Tversky", alpha=0.3, beta=0.7, quiet=TRUE) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cluster.sizestat(clusters, cluster.result=1) cluster.sizestat(clusters, cluster.result=2) cluster.sizestat(clusters, cluster.result=3) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## clusters <- cmp.cluster(db=apset, cutoff = c(0.65, 0.5, 0.3), ## save.distances="distmat.rda") # Saves distance matrix to file "distmat.rda" in current working directory. ## load("distmat.rda") # Loads distance matrix. ## ## ----eval=TRUE, tidy=FALSE----------------------------------------------- data(apset) fpset <- desc2fp(apset) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- jarvisPatrick(nearestNeighbors(apset,numNbrs=6), k=5, mode="a1a2b") #Using "APset" jarvisPatrick(nearestNeighbors(fpset,numNbrs=6), k=5, mode="a1a2b") #Using "FPset" ## ----eval=TRUE, tidy=FALSE----------------------------------------------- cl<-jarvisPatrick(nearestNeighbors(fpset,cutoff=0.6, method="Tanimoto"), k=2 ,mode="b") byCluster(cl) ## ----eval=TRUE, tidy=FALSE----------------------------------------------- nnm <- nearestNeighbors(fpset,numNbrs=6) nnm$names[1:4] nnm$ids[1:4,] nnm$similarities[1:4,] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- nnm <- trimNeighbors(nnm,cutoff=0.4) nnm$similarities[1:4,] ## ----eval=TRUE, tidy=FALSE----------------------------------------------- jarvisPatrick(nnm, k=5,mode="b") ## ----eval=TRUE, tidy=FALSE----------------------------------------------- nn <- matrix(c(1,2,2,1),2,2,dimnames=list(c('one','two'))) nn byCluster(jarvisPatrick(fromNNMatrix(nn),k=1)) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## cluster.visualize(apset, clusters, size.cutoff=2, quiet = TRUE) # Color codes clusters with at least two members. ## cluster.visualize(apset, clusters, quiet = TRUE) # Plots all items. ## ----mds_scatter, eval=TRUE, tidy=FALSE---------------------------------- library(scatterplot3d) coord <- cluster.visualize(apset, clusters, size.cutoff=1, dimensions=3, quiet=TRUE) scatterplot3d(coord) ## ----eval=FALSE, tidy=FALSE---------------------------------------------- ## library(rgl) rgl.open(); offset <- 50; ## par3d(windowRect=c(offset, offset, 640+offset, 640+offset)) ## rm(offset) ## rgl.clear() ## rgl.viewpoint(theta=45, phi=30, fov=60, zoom=1) ## spheres3d(coord[,1], coord[,2], coord[,3], radius=0.03, color=coord[,4], alpha=1, shininess=20) ## aspect3d(1, 1, 1) ## axes3d(col='black') ## title3d("", "", "", "", "", col='black') ## bg3d("white") # To save a snapshot of the graph, one can use the command rgl.snapshot("test.png"). ## ----ap_dist_matrix, eval=TRUE, tidy=FALSE------------------------------- dummy <- cmp.cluster(db=apset, cutoff=0, save.distances="distmat.rda", quiet=TRUE) load("distmat.rda") ## ----hclust, eval=TRUE, tidy=FALSE--------------------------------------- hc <- hclust(as.dist(distmat), method="single") hc[["labels"]] <- cid(apset) # Assign correct item labels plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=T) ## ----fp_hclust, eval=FALSE, tidy=FALSE----------------------------------- ## simMA <- sapply(cid(fpset), function(x) fpSim(fpset[x], fpset, sorted=FALSE)) ## hc <- hclust(as.dist(1-simMA), method="single") ## plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE) ## ----heatmap, eval=TRUE, tidy=FALSE-------------------------------------- library(gplots) heatmap.2(1-distmat, Rowv=as.dendrogram(hc), Colv=as.dendrogram(hc), col=colorpanel(40, "darkblue", "yellow", "white"), density.info="none", trace="none") ## ----getIds, eval=FALSE, tidy=FALSE-------------------------------------- ## compounds <- getIds(c(111,123)) ## compounds ## ----searchString, eval=FALSE, tidy=FALSE-------------------------------- ## compounds <- searchString("CC(=O)OC1=CC=CC=C1C(=O)O") compounds ## ----searchSim, eval=FALSE, tidy=FALSE----------------------------------- ## data(sdfsample); ## sdfset <- sdfsample[1] ## compounds <- searchSim(sdfset) ## compounds ## ----listCMTools, eval=FALSE, tidy=FALSE--------------------------------- ## listCMTools() ## ----toolDetailsCMT, eval=TRUE, tidy=FALSE------------------------------- toolDetails("Fingerprint Search") ## ----launchCMTool, eval=FALSE, tidy=FALSE-------------------------------- ## job1 <- launchCMTool("pubchemID2SDF", 2244) ## status(job1) ## result1 <- result(job1) ## ----fingerprintSearchCMT, eval=FALSE, tidy=FALSE------------------------ ## job2 <- launchCMTool('Fingerprint Search', result1, 'Similarity Cutoff'=0.95, 'Max Compounds Returned'=200) ## result2 <- result(job2) ## job3 <- launchCMTool("pubchemID2SDF", result2) ## result3 <- result(job3) ## ----obDescriptorsCMT, eval=FALSE, tidy=FALSE---------------------------- ## job4 <- launchCMTool("OpenBabel Descriptors", result3) ## result4 <- result(job4) ## result4 ## ----obDescriptorsWWW, eval=FALSE, tidy=FALSE---------------------------- ## browseJob(job4) ## ----binningClusterWWW, eval=FALSE, tidy=FALSE--------------------------- ## job5 <- launchCMTool("Binning Clustering", result3, 'Similarity Cutoff'=0.9) ## browseJob(job5) ## ----sessionInfo, results='asis'----------------------------------------- sessionInfo() ## ----biblio, echo=FALSE, results='asis'---------------------------------- #hack to get rid of latex code returned by certain doi sites (e.g. crosscite.org) fix = function(t) gsub("\\$\\\\(l|r)brace\\$", "", t) suppressWarnings({ sink(tempfile()) b<<-bibliography() sink(NULL) }) for(i in 1:length(b)) b[i]$title = fix(b[i]$title) # write.bibtex(file="references.bib") b