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Abstract

This manual describes the usage of the functions in the rflowcyt library package, part of the
Bioconductor1 project. The main categories are Data Mananagement and Retrieval, Flow Cytom-
etry Visualizations, Exploratory Analysis, Gating, and Flow Cytometry Hypothesis Testing and
Statistical Inference. Examples are also shown for each category.
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1 Data Management and Retrieval

The rflowcyt tools in this category are used for the following tasks:

1. read.FCS to read in FCS binary files into R-objects of S4 class FCS

2. [i,j] to extract or subset information from the data (a matrix object) of the FCS R-object

3. [[i]] to extract metadata (which is of S4 class FCSmetadata) portion of the FCS R-object

4. [i,j]<- to replace data information

5. addParameter to add column variables in the data

6. [[i]]<- to replace or add new information to the metadata portion of the FCS R-object

7. as to coerce among FCS, data.frame and matrix class objects

8. equals to demonstrate equality between two FCS R objects

9. print-methods, show-methods print or show methods for FCS objects

10. checkvars to check for any discrepancies between the metadata and the data of the FCS object

11. fixvars to fix the metadata to relect the information obtained from the data if there are dis-
crepancies

12. summary-methods to summarize the FCS R-object with Tukey’s five number summary of the data

and with slot information in the metadata and to output an FCSsummary S4 class object

1.1 Datasets

There are four types of data sets that are available in the required data package rfcdmin. The first
two types of data set consists of raw binary Flow Cytometry Standard (FCS) files, and the second type
consists of R-objects of S4 class FCS and is the result of reading in FCS binary files using read.FCS

or read.series.FCS function. Table 1 summarizes the current reading information for the raw binary
files in the rfcdmin data package.

For more information about the binary FCS files and the dataset contain in the rfcdmin package,
look at the package documentation files using the commands in R:

> help(package="rfcdmin")

FCS Version Source Machine bit resolution Integer range
facscan256.fcs 2.0 UW facscan 8 0-256
SEB-NP22.fcs 3.0 FHCRC DiVa 10 0-1024

A06-H06 2.0 BCCRC FACSCalibur 10 0-1024

Table 1: Example FCS binary files in ’rfcdmin’ package that can be read in using read.FCS or
read.series.FCS. (UW: University of Washington, Seattle; FHCRC: Fred Hutchinson Cancer Research
Center, Seattle; BCCRC: British Columbia Cancer Research Center, Vancouver)
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1.1.1 Binary FCS data files

The Flow Cytometry Standard (FCS) binary files consist of a HEADER, a TEXT, a DATA, and an
optional ANALYSIS segment. The HEADER in ASCII text gives information about the version of the
FCS file and the byte offsets of the beginning and ending of the other segments within the FCS file.
The FCS version 3.0 is currently used and has been updated from version 2.0 to accommodate data
sets longer than 99,999,999 bytes and allowing for primary and supplemental portions within the TEXT
segment, among other changes. Located after the HEADER, the TEXT segment in ASCII text includes
summary information in keywords such as the number of observations and names of column variables
in the DATA segment. The DATA segment that follows consists of the raw binary data. The optional
ANALYSIS segment includes some results of earlier data analyses (Robinson, 2001).

When specific immunofluoroescence signals are received and digitized by the analog-to-digital con-
verters (ADCs) of a flow cytometer machine, the measurements are grouped into a number of bins based
on the bit-resolution of the ADC. Thus, a n-bit resolution ADC will group the data into 2n bins or
”channels”. Thus, each immunofluoroescence measurement variable is actually categorical and has an
integer range from 0 to 2n, depending on the ADC bit-resolution, which is usually 10 or 8 (Robinson,
2001).

1.1.2 Reading in the FCS binary file

The subsequent code allows us to call the rflowcyt library. If the rflowcyt library is in the working
library location, then the library.location is a character string identifying the location of the rflowcyt
library.

> library(rflowcyt)

locfit 1.5-6 2010-01-20

Scalable Robust Estimators with High Breakdown Point (version 1.2-01)

Spatial Point Pattern Analysis Code in S-Plus

Version 2 - Spatial and Space-Time analysis

> if (!require(rfcdmin)) {

+ stop("rfcdmin not available?")

+ }

The raw binary FCS files can have the extension ”.fcs” or no extension at all. The raw binary FCS
files can be read one by one using the read.FCS function or in a set using the read.series.FCS function.
The output is either a FCS R object of S4 or S3 class or a list of FCS R-objects. (NB: Currently, the
rflowcyt package implements functions and methods with the S4 class.)

In order to read in the FCS binary file, the location of the FCS binary file in the fcs or bccrc directories
of the rfcdmin package has to be input as a parameter in the calling for read.FCS or read.series.FCS.

> fcs.loc <- system.file("fcs", package="rfcdmin")

After finding the .fcs file location, we will read in the raw binary file ”facscan256.fcs” using read.FCS

and call it FC.FCSRobj. In order to demonstrate a S3-to-S4 class change, we will incorrectly read in the
binary file as an S3 object.

> file.location <- paste(fcs.loc, "facscan256.fcs", sep="/")

> FC.FCSRobj <- read.FCS(file.location, UseS3=TRUE, MY.DEBUG=FALSE)
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NOTE: Long names $PnS are missing.

Short names $PnN are assigned to the dataset instead.

The following are FCS R-objects which are readily accessible in R and can be used for analysis using
the tools in the rflowcyt package. Prior to this release, the FCS class has been S3. Now the FCS
class among other classes (FCSmetadata, FCSgate (described in the Gating section), FCSggobi (still in
working progress) ) are S4. Use convertS3toS4 to convert S3-class FCS to S4-class FCS R objects. To
exemplify the conversion, the following demonstrates the conversion of an S3 FCS R-object to an S4 FCS

R-object:

> FC.FCSRobj<-convertS3toS4(FC.FCSRobj,

+ myFCSobj.name="FC.FCSRobj",

+ fileName=file.location)

The read.series.FCS function allows to read multiple FCS files. The output is a list of FCS

R-object.

> pathFiles <- system.file("bccrc", package="rfcdmin")

> drugFiles <- dir(pathFiles)

> drugData <- read.series.FCS(drugFiles, path=pathFiles, MY.DEBUG=FALSE)

A FCS R-object has slots data and metadata. The data component is a matrix in which the rows are
the individual cells or observations, and the columns are the different immunofluoroescence measure-
ments or variables. The metadata is of S4-class FCSmetadata and has slots referring to keywords that are
in the TEXT segment of the FCS raw binary file. Information such as variable names (longnames and
shortnames) and ranges (paramranges) are also slots in the metadata component. For more details,
see the help files for FCS and FCSmetadata.

1.1.3 Opening rflowcyt data with FCS R-objects

The rfcdmin data package also contains archived FCS R-object:

> data(VRCmin)

> data(MC.053min)

> data(flowcyt.fluors)

For more details of the FCS R-object available see data(package="rfcdmin").

1.1.4 Other S4 class R-objects

Besides the FCS class, other S4 class R-objects include FCSmetadata, FCSsummary, and FCSgate. The
FCS class is the class of all FCS files that are read into R using read.FCS or read.series.FCS. The
FCSmetadata is the class of the metadata slot of an FCS R-object. The FCSsummary class is the class
of the output of the summary method implemented on a FCS R-object. The FCSgate class contains the
FCS class and extends it to include gating information (ie, the information about the indexing of row
observations for subsequent extraction).

The following is a brief summary of the available, generic methods associated with each class object.

• ”new” Generic Method Default objects can be made by using the new(object-contents,

S4-class-name) method, where object-contents refer to the contents of each slot for the specified
S4-class-name.

The following commands produce default class objects with no slot information:
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> ## default S4 objects

> new.FCS <- new("FCS")

> new.FCSmetadata <- new("FCSmetadata")

> new.FCSsummary <- new("FCSsummary")

> new.FCSgate <- new("FCSgate")

• ”coercian” Generic Method Currently, there are only coercian methods to and from the FCS

class and the matrix and data.frame classes.

A user makes a FCS R-object by the coercian method as exemplified in the following code, where
data2 is a matrix or data.frame identifying the rows as the cell observations and the columns as
the different variables:

> data2 <- rbind(1:10, 2:11, 3:12)

> ## coerce data into a matrix object

> data2.matrix <- as(data2, "matrix")

> ## coerce data into a data.frame object

> data2.df <- as.data.frame(data2)

> ## coercing matrix into FCS

> test.FCSRobj <- as(data2.matrix, "FCS")

> ## coercing data.frame into FCS

> test.FCSobj2 <- as(data2.df, "FCS")

> ## coercing a FCS object to a matrix

> original.matrix <- as(test.FCSobj2, "matrix")

> ## coercing a FCS object to a data.frame

> original.matrix <- as(test.FCSobj2, "data.frame")

> ## assigning the metadata

> metadata <- new("FCSmetadata", size=dim(data2)[1], nparam=dim(data2)[2],

+ fcsinfo=list("comment"="This is a pseudo FCS-R object."))

> test.FCSRobj@metadata<-metadata

> test.FCSRobj

Original Object of class `FCS' from: None

Object name: None

Dimensions 3 by 10

• ”is” Generic Method The S4 R-object class can be verified by using the is method.

> is(MC.053, "matrix")

[1] FALSE

> is(MC.053, "FCS")

[1] TRUE

> is(MC.053@metadata, "FCSmetadata")

[1] TRUE

> is(MC.053, "FCSgate")

[1] FALSE

The FCSsummary class is exemplified below:
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> sum.FCS <- summary(MC.053)

I. Data reports:

A. Dimension Check: Dimensions: (row X col): 126795 X 7

B. Data Column Names & Univariate Summary:

Using Tukey's method for the five number summary

column min lower-hinge median upper-hinge max mean sd

Forward Scatter 1 0 430 504 687 1023 568.045 196.049

Side Scatter 2 0 70 94 275 1023 185.913 185.470

IFNgamma FITC 3 0 194 236 308 955 246.718 81.965

CD69 PE 4 0 291 353 422 1023 357.339 108.511

CD8 PerCP 5 0 111 186 286 986 237.867 187.510

<NA> 6 0 0 0 0 1023 0.906 9.737

CD3 APC 7 0 276 740 806 1023 571.022 288.345

II. Metadata Variable/Slot reports:

A. Metadata Slots:

slotnames description values

1 mode Mode L

2 size/$TOT number of cells/rows 126795

3 nparam/$PAR number of column params 7

4 shortnames/$PnN Shortnames of column parameters see below

5 longnames/$PnS Longnames of column parameters see below

6 paramranges/$PnR Ranges/max of column parameters see below

7 filename original FCS filename 042402c1.053.fcs

8 objectname name of current object MC.053

9 original current object original status TRUE

10 fcsinfo misc. metadata info see part II B.

$ColumnParametersSummary

$PnN $PnS $PnR

[1,] "FSC-H" "Forward Scatter" "1024"

[2,] "SSC-H" "Side Scatter" "1024"

[3,] "FL1-H" "IFNgamma FITC" "1024"

[4,] "FL2-H" "CD69 PE" "1024"

[5,] "FL3-H" "CD8 PerCP" "1024"

[6,] "FL1-A" NA "1024"

[7,] "FL4-H" "CD3 APC" "1024"

B. Metadata 'fcsinfo' slot length= 103 & slot names:

$fcsinfoNames

[1] "$BYTEORD" "$DATATYPE" "$NEXTDATA"

[4] "$SYS" "CREATOR" "$P1B"

[7] "$P1E" "$P2B" "$P2E"

[10] "$P3B" "$P3E" "$P4B"

[13] "$P4E" "$P5B" "$P5E"
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[16] "$P6B" "$P6E" "$P7B"

[19] "$P7E" "PATIENT ID" "SAMPLE ID"

[22] "$CYT" "CYTNUM" "$BTIM"

[25] "$ETIM" "BD$AcqLibVersion" "BD$NPAR"

[28] "BD$P1N" "BD$P2N" "BD$P3N"

[31] "BD$P4N" "BD$P5N" "BD$P6N"

[34] "BD$P7N" "BD$WORD0" "BD$WORD1"

[37] "BD$WORD2" "BD$WORD3" "BD$WORD4"

[40] "BD$WORD5" "BD$WORD6" "BD$WORD7"

[43] "BD$WORD8" "BD$WORD9" "BD$WORD10"

[46] "BD$WORD11" "BD$WORD12" "BD$WORD13"

[49] "BD$WORD14" "BD$WORD15" "BD$WORD16"

[52] "BD$WORD17" "BD$WORD18" "BD$WORD19"

[55] "BD$WORD20" "BD$WORD21" "BD$WORD22"

[58] "BD$WORD23" "BD$WORD24" "BD$WORD25"

[61] "BD$WORD26" "BD$WORD27" "BD$WORD28"

[64] "BD$WORD29" "BD$WORD30" "BD$WORD31"

[67] "BD$WORD32" "BD$WORD33" "BD$WORD34"

[70] "BD$WORD35" "BD$WORD36" "BD$WORD37"

[73] "BD$WORD38" "BD$WORD39" "BD$WORD40"

[76] "BD$WORD41" "BD$WORD42" "BD$WORD43"

[79] "BD$WORD44" "BD$WORD45" "BD$WORD46"

[82] "BD$WORD47" "BD$WORD48" "BD$WORD49"

[85] "BD$WORD50" "BD$WORD51" "BD$WORD52"

[88] "BD$WORD53" "BD$WORD54" "BD$WORD55"

[91] "BD$WORD56" "BD$WORD57" "BD$WORD58"

[94] "BD$WORD59" "BD$WORD60" "BD$WORD61"

[97] "BD$WORD62" "BD$WORD63" "BD$LASERMODE"

[100] "CalibFile" "P7THRESVOL" "$FIL"

[103] "$DATE"

> is(sum.FCS, "FCSsummary")

[1] TRUE

1.2 Tools to access and manipulate FCS R-objects

1.2.1 Descriptive tools for FCSmetadata class R-objects

To access or extract the metadata components, use either the @ or metaData.

> ## returns the same FCSmetadata object

> meta1<-st.1829@metadata

> meta1<-metaData(st.1829)

To get a description of the FCSmetadata class, use for example the show, print, and summary

functions.

> show(st.1829@metadata)

FACSmetadata for original FCS object: st.1829 from original file 1829_GAG.fcs

with 126675 cells and 8 parameters.

8



The following code would output the metadata as a string and is not shown because of its lengthy
output.

> summary(st.1829@metadata)

The slots for an FCSmetadata are summarized in Table 2.

slotnames description
1 mode Mode
2 size number of cells/rows
3 nparam number of column parameters
4 shortnames shortnames of column parameters
5 longnames longnames of column parameters
6 paramranges Ranges/Max value of the columns
7 filename original FCS filename
8 objectname name of the current object
9 original current object original status

10 fcsinfo misc.metadata info

Table 2: FCSmetadata slot descriptions

Slots and slot components of the metadata can be retreived by using @, [i], or [[i]]. Currently
to extract metadata information, we can use a single character string index being one of the slotnames
in Table 2 or one of the slotnames in the fcsinfo slot. In the case that there is a common slotname
that is also in the fcsinfo slot, only the slot from Table 2 will be retrieved.

A single numeric index or a vector of numeric indices refers to only the slot positions of the fcsinfo

slot.
The following examples extract the column parameter ranges or maximum value.

> ## extracting the ranges

> st.1829@metadata@paramranges

[1] 1024 1024 1024 1024 1024 1024 1024 1024

> st.1829@metadata["paramranges"]

[1] 1024 1024 1024 1024 1024 1024 1024 1024

> st.1829@metadata[["$PnR"]]

[1] 1024 1024 1024 1024 1024 1024 1024 1024

A single component of the range can also be retrieved

> st.1829@metadata[["$P1R"]]

[1] 1024

Items in the FCSmetadata can be replaced by using [...]<- or [[...]]<-.
The following example will replace the longnames with dummy names.

> ## longnames before the change

> st.1829@metadata["longnames"]
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[1] "FSC-Height" "Side Scatter" "CD8 FITC"

[4] "IFN, IL2, TNF PE" "CD4 perCP" " "

[7] "CD3 APC" "Time (204.80 sec.)"

> ## some longname changes

> st.1829@metadata["longnames"] <- rep("dummy", length(st.1829@metadata["longnames"]))

> ## name the third column longname as "wrongname"

> st.1829@metadata["$P3S"] <- "wrongname"

> ## longnames after the change

> st.1829@metadata["longnames"]

[1] "dummy" "dummy" "wrongname" "dummy" "dummy" "dummy"

[7] "dummy" "dummy"

To extract and replace slots of the metadata of a FCS object, use only [[..]] and [[...]]<-,
respectively.

> ## extraction

> shortnames.1829 <- st.1829[["shortnames"]]

> shortnames.1829

[1] "FSC-H" "SSC-H" "FL1-H" "FL2-H" "FL3-H" "FL2-A" "FL4-H" "Time"

> ##replacement

> st.1829[["$PnR"]]

[1] 1024 1024 1024 1024 1024 1024 1024 1024

> st.1829[["$P1R"]] <- 0

> st.1829[["paramranges"]]

[1] 0 1024 1024 1024 1024 1024 1024 1024

> st.1829[["newslot"]]

NULL

> st.1829[["newslot"]] <- "this is even cooler"

> st.1829[["newslot"]]

[1] "this is even cooler"

When using the replacement method for a FCSmetadata R-object (i.e.,[...]<- or [[...]]<-), if
the slotname is not found, then a new slot with the current character index is made under the fcsinfo

slot. In the following example, we will add a new slot named newslot to the metadata.

> ## making a newslot

> st.1829@metadata[["newslot"]]<- "wow this is cool"

> ## newslot is automatically made in the "fcsinfo" slot

> st.1829@metadata@fcsinfo[["newslot"]]

[1] "wow this is cool"
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1.2.2 Descriptive tools for FCS class R-objects

To access or extract the data components, use either @ or fluors.

> ## returns the same FCSmetadata object

> meta1<-st.1829@metadata

> meta1<-metaData(st.1829)

> ## returns the same data matrix

> data1<-st.1829@data

> data1<-fluors(st.1829)

> summary(data1)

FSC-Height Side Scatter CD8 FITC IFN, IL2, TNF PE

Min. : 125.0 Min. :167.0 Min. : 0.0 Min. : 0.0

1st Qu.: 339.0 1st Qu.:410.0 1st Qu.:155.0 1st Qu.:222.0

Median : 441.0 Median :473.0 Median :227.0 Median :285.0

Mean : 489.9 Mean :475.6 Mean :235.2 Mean :276.1

3rd Qu.: 680.0 3rd Qu.:543.0 3rd Qu.:274.0 3rd Qu.:340.0

Max. :1023.0 Max. :969.0 Max. :856.0 Max. :882.0

CD4 perCP CD3 APC Time (204.80 sec.)

Min. : 0.0 Min. : 0.0000 Min. : 0.0 Min. : 0.0

1st Qu.:121.0 1st Qu.: 0.0000 1st Qu.:199.0 1st Qu.:140.0

Median :264.0 Median : 0.0000 Median :272.0 Median :291.0

Mean :256.8 Mean : 0.8412 Mean :321.8 Mean :292.5

3rd Qu.:371.0 3rd Qu.: 0.0000 3rd Qu.:399.0 3rd Qu.:444.0

Max. :948.0 Max. :1023.0000 Max. :969.0 Max. :599.0

A set of descriptive tools are attached to the FCS R-object. The method print (using an FCS object
in its signature) will automatically give a short summary of the FCS R-object without printing out all
the contents of the data and the metadata. The following examples are different incantations of the
print method for FCS objects:

> print(unst.1829)

Original Object of class `FCS' from: 1829_28+49d.fcs

Object name: unst.1829

Dimensions 197025 by 8

> print(MC.053)

Original Object of class `FCS' from: 042402c1.053.fcs

Object name: MC.053

Dimensions 126795 by 7

A longer and more detailed summary with statistics for the column variables can be displayed by
using the summary method, whose output is a FCSsummary S4 class.

To extract and replace components within the data matrix of a FCS object, use only [..] and
[...]<-, respectively.

> ## extraction first 10 rows

> firstten.1829 <- as(st.1829[1:10,], "matrix")

> firstten.1829
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FSC-Height Side Scatter CD8 FITC IFN, IL2, TNF PE CD4 perCP CD3 APC

1 341 408 154 238 232 0 532

2 690 564 265 371 255 0 313

3 335 455 562 128 106 0 744

4 367 550 165 283 113 0 240

5 190 495 219 334 107 0 284

6 441 414 194 229 159 0 339

7 144 443 199 296 0 0 261

8 730 509 257 344 366 0 247

9 542 480 243 337 278 0 326

10 305 463 61 113 472 0 563

Time (204.80 sec.)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

> ## etraction of single element

> firstobs.1829 <- as(st.1829[1,1], "matrix")

> firstobs.1829

FSC-Height

1 341

> ##replacement of first element

> st.1829[1,1] <- 99999999

> as(st.1829[1,1], "matrix")

FSC-Height

1 1e+08

> st.1829[1,1]<-firstobs.1829

> as(st.1829[1,1], "matrix")

FSC-Height

1 341

> st.1829[1,1]

Non-original Object of class `FCS' from: 1829_GAG.fcs

Object name: st.1829

Dimensions 1 by 1

Note that the ”original”slot within the metadata is only changed to FALSE when the data is changed.
Changing the metadata itself will not alter the status of the ”original” slot.

> ## the data was changed so the original flag should be FALSE

> st.1829[["original"]]
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[1] FALSE

The function dim.FCS retrieves the dimensions of the data matrix of a FCS R-object.

> dim.1829 <- dim.FCS(st.1829)

> dim.1829

[1] 126675 8

A data parameter column can be appended to the data matrix of a FCS R-object by using the method
addParameter, which will also result in the change of the ”original” metadata slot to be FALSE.

> column.to.add <- rep(0, dim.1829[1])

> st.1829 <-addParameter(st.1829, colvar=column.to.add,

+ shortname="test", longname="example",

+ use.shortname=FALSE)
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2 Data Assessment

2.1 Checking Validity of the FCS R-object and Fixing errors

The method checkvars checks the ranges, dimensions, and the column variable names of the data
against what is specified in the metadata. If details are not specified in the metadata, then the available
information is added to the metadata. The output is a boolean as to whether the object passes the
check. The option, MY.DEBUG=TRUE , allows us to view the checking statments.

> st.1829.checkstat <- checkvars(st.1829,

+ MY.DEBUG=TRUE)

[1] "Class is FCS"

[1] "Object has data"

[1] "Object has metadata"

[1] "Object has a name:st.1829"

[1] "Data Dimension Check: Dimensions: (row X col)"

[1] " Data: (126675 X 9)"

[1] " Metadata: (126675 X 9)"

[1] "Names Check:"

Data Parameter Names st.1829@metadata@longnames

[1,] "FSC-Height" "dummy"

[2,] "Side Scatter" "dummy"

[3,] "CD8 FITC" "wrongname"

[4,] "IFN, IL2, TNF PE" "dummy"

[5,] "CD4 perCP" "dummy"

[6,] " " "dummy"

[7,] "CD3 APC" "dummy"

[8,] "Time (204.80 sec.)" "dummy"

[9,] "example" "example"

[1] " st.1829@metadata@longnames do not match with that of the data."

[1] "Range Check: Column parameters are within specified metadata range."

Data Ranges st.1829@paramranges

FSC-Height 1023 1023

Side Scatter 969 969

CD8 FITC 856 856

IFN, IL2, TNF PE 882 882

CD4 perCP 948 948

1023 1023

CD3 APC 969 969

Time (204.80 sec.) 599 599

example 0 0

> st.1829.checkstat

[1] FALSE

Because st.1829 has been altered such that there is a discrepancy between the metadata and the
data portions of this FCS object, fixvars will be used to correct major errors.

> if (st.1829.checkstat==FALSE){

+ ## fix the FCS R object

+ st.1829 <- fixvars(st.1829, MY.DEBUG=TRUE)

+ }
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[1] "Class is FCS"

[1] "Object has data"

[1] "Object has metadata"

[1] "Object has a name: st.1829"

[1] "Data Dimension Check: Dimensions: (row X col)"

[1] " Data: (126675 X 9)"

[1] " Metadata: (126675 X 9)"

[1] "Names Check:"

Data Parameter Names st.1829@metadata@longnames

[1,] "FSC-Height" "dummy"

[2,] "Side Scatter" "dummy"

[3,] "CD8 FITC" "wrongname"

[4,] "IFN, IL2, TNF PE" "dummy"

[5,] "CD4 perCP" "dummy"

[6,] " " "dummy"

[7,] "CD3 APC" "dummy"

[8,] "Time (204.80 sec.)" "dummy"

[9,] "example" "example"

[1] " st.1829@metadata@longnames do not match with that of the data."

[1] "Names Fix: Replacement of the metadata parameter(s):"

[,1]

[1,] "$P1S"

[2,] "$P2S"

[3,] "$P3S"

[4,] "$P4S"

[5,] "$P5S"

[6,] "$P6S"

[7,] "$P7S"

[8,] "$P8S"

[1] " from the old name(s) of the original metadata:"

[,1]

[1,] "dummy"

[2,] "dummy"

[3,] "wrongname"

[4,] "dummy"

[5,] "dummy"

[6,] "dummy"

[7,] "dummy"

[8,] "dummy"

[1] " to the following name(s) from the data:"

[,1]

[1,] "FSC-Height"

[2,] "Side Scatter"

[3,] "CD8 FITC"

[4,] "IFN, IL2, TNF PE"

[5,] "CD4 perCP"

[6,] " "

[7,] "CD3 APC"

[8,] "Time (204.80 sec.)"

[1] "Range Check: Column parameters are within specified metadata range."

Data Ranges st.1829@paramranges
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FSC-Height 1023 1023

Side Scatter 969 969

CD8 FITC 856 856

IFN, IL2, TNF PE 882 882

CD4 perCP 948 948

1023 1023

CD3 APC 969 969

Time (204.80 sec.) 599 599

example 0 0

The original FCS R-object can be retrieved by using the function get, if the original object is on the
current workspace and has been unchanged. Alternatively, the original FCS R-object can be obtained
by reading in the binary, fcs file from the /fcs directory (if this raw binary file exists) of the data package
rfcdmin.

> st.1829 <- get(st.1829[["objectname"]])

> original.FC.FCSRobj <- read.FCS(FC.FCSRobj[["filename"]],

+ MY.DEBUG=FALSE)

NOTE: Long names $PnS are missing.

Short names $PnN are assigned to the dataset instead.

2.2 Equality between FCS objects

Two FCS objects can be checked for equality by using the equals method. The default check is to verify
the equality of the metadata (except for the filename and the objectname) and all the elements of the
data.

> ## default is to not check the equality

> ## of filenames and objectnames and

> ## only check the equality of the data and

> ## the other metadata slots

> equals(st.1829, unst.1829)

[1] FALSE

The check.filename and check.objectname set to TRUE will allow the equality verification of the
filename and objectname slots in the metadata.

> ## check equality of everything in the metadata

> ## and the data of the FCS objects

> equals(st.1829, st.1829, check.filename=TRUE,

+ check.objectname=TRUE)

[1] TRUE

2.3 Data quality assessment between FCS objects

Data assessment is the act of inspecting data, measuring the defects and analyzing the cause (and
potentially the impact of those defects).

You may have an experiment where one sample has been divided in several aliquots and therefore
you should be able to compare some measured parameters like the size (FSC - Forward SCatter) or
the granularity (SSC - Side SCatter) of the different aliquots. In order to assess the data quality, we
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propose 3 graphical methods to explore the data and to detect whether any aliquots or samples were
substantially different from the others, in a way that were not likely to be biologically motivated and
therefore misleading.

1. Boxplot (or box-and-whisker) plot is a graphical representation of dispersions and extreme scores.
Represented in this graphic are minimum, maximum, and quartile scores in the form of a box with
”whiskers.” The box includes the range of scores falling into the middle 50% of the distribution
(median) (Inter Quartile Range = 75 th percentile - 25 th percentile) and the whiskers are lines
extended to the minimum and maximum scores in the distribution or to mathematically defined
(+/-1.5*IQR) upper and lower fences. Boxplot summarizes the location and the shape of the
distribution. For more details, see boxplot and boxplot.FCS in the graphics andrflowcyt package,
respectively .

2. Empirical cumulative distribution function (ecdf) reveals differences in the distributions. For
more details, see ecdf and plotECDF.FCS in the stats andrflowcyt package, respectively.

3. Density plot reveals the shape of the distributions.For more details, see density.lf and plot-

density.FCS in the locfit and rflowcyt package, respectively.

As an example, we draw the differents plot for two different datasets from the British Columbia
Cancer Research Center, Vancouver (Canada):

1. Time course experiment: collection of weekly peripheral blood samples from 1 patient (R object
flowcyt.fluors in the rfcdmin data package).

2. Cell line dataset: Flow Cytometry High Content Screening (FC-HCS) of a 2000-compound library
by the mean of one cell line (FCS files from A06 to H06 in the rfcdmin data package -in this
experiment, the name of the sample corresponds to its position in a 96 wells plates) (Gasparetto
et al., 2004).

For more details, see help="rfcdmin".

2.3.1 Time course experiment

This dataset is an abstract of a time couse experiment realised at the British Columbia Cancer Research
Center (Thanks to R. Brinkman, C. Smith and M. Gasparetto). It is a collection of weekly peripheral
blood samples from 1 patient, divided in 8 aliquots at each time point and labeled by 4 markers to
identify 8 differents stains.

First, we load the data:

> require(rfcdmin)

> data(flowcyt.data)

Then, we can draw a density plot for the Foward SCatter parameter (varpos=1) at the time points
1 and 9.

17



At the time point 9, we can see that the data for the first stain looks peculiar. We can also observe
the multimodal distribution of the data.
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> ## Draw a density plot for the Foward scatter parameter

> old.par <- par(no.readonly=TRUE)

> mat <- matrix(c(1:2),1,2,byrow=TRUE)

> nf <- layout(mat,respect=TRUE)

> plotdensity.FCS(flowcyt.data[1:8],

+ varpos=c(1),

+ main="FSC density plot at time point 1",

+ ylim=c(0,0.015),

+ ylab="density of cells")

> legend(450,0.012,paste("stain",c(1:8),sep=""),col=c(1:8),pch=22)

> plotdensity.FCS(flowcyt.data[65:72],

+ varpos=c(1),

+ main="FSC density plot at time point 9",

+ ylim=c(0,0.015),

+ ylab="density of cells")

> legend(450,0.012,paste("stain",c(1:8),sep=""),col=c(1:8),pch=22)

> par(old.par)
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Figure 1: plotdensity.FCS: Density plots of the forward scatter parameter of the different stains, at
different 2 different time points (flowcyt.fluors FCS R object)
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To minimize the effect of multimodal distribution on the shape of the distributions, we can represent
the FSC data via a ECDF plot. This representation eventially allows us to confirm the previously
observed phenomenon.
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> ##Draw an empirical cumulative density plot for the Foward scatter

> ##parameter of the different stains at a particular different time point

> ##(one panel per time point).

> print(plotECDF.FCS(flowcyt.data,

+ varpos=c(1),

+ var.list=c(paste("time",1:12,sep="")),

+ group.list=paste("Stain",c(1:8),sep=""),

+ main="ECDF of the FSC for different stains at a particular time point",

+ lwd=2,

+ cex=1.5))
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Figure 2: plotECDF.FCS: Empirical Cumulative Distribution plot of the forward scatter parameter of
the different stains, at different 12 different time points (flowcyt.fluors FCS R object)
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Finally, we can draw a boxplot for the Foward SCatter parameter (varpos=1) at different time points
(e.g. time points 1, 3, 7 and 9)
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> ## Draw a boxplot for the Foward SCatter parameter for the time points 1

> ## and 6 (in this experiment, each time point corresponds to a column of

> ## a 96 wells plates)

> old.par <- par(no.readonly=TRUE)

> mat <- matrix(c(1:4),2,2,byrow=TRUE)

> nf <- layout(mat,respect=TRUE)

> print(boxplot.FCS(flowcyt.data[1:8],

+ varpos=c(1),col=c(1:8),

+ main="FSC across stains time point 1",

+ names=paste("stain",c(1:8),sep="")))

> print( boxplot.FCS(flowcyt.data[17:24],

+ varpos=c(1),

+ col=c(1:8),

+ main="FSC across stains time point 3",

+ names=paste("stain",c(1:8),sep="")))

> print( boxplot.FCS(flowcyt.data[49:56],

+ varpos=c(1),

+ col=c(1:8),

+ main="FSC across stains time point 7",

+ names=paste("stain",c(1:8),sep="")))

> print( boxplot.FCS(flowcyt.data[65:72],

+ varpos=c(1),

+ col=c(1:8),

+ main="FSC across stains time point 9",

+ names=paste("stain",c(1:8),sep="")))

> par(old.par)
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Figure 3: boxplot.FCS: Boxplot of the Foward SCatter parameter of the different stains at different 4
different time points (flowcyt.fluors FCS R object)
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The boxplot representations also confirm that, at time point 9, the first stain looks peculiar. Because
of the multimodal distribution, the boxplot representation can be criticized but it still give us a good
overview of the location of the distribution . For example, we can also see that at time point 1 and 3
the median of the FSC parameter is around 200 and that this parameter falls to 100 at time point 7
(observations not easily made in the density plot and not available in the ECDF representation).
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2.3.2 Cell line experiment

This dataset is an abstract of a Flow Cytometry High Content Screening (FC-HCS) of a 2000-compound
library (the reagent being a cell line) to identify compounds that would enhance the anti-lymphoma
activity of the therapeutic antibofy rituximab (Gasparetto et al., 2004). It is a collection of 8 FCS files.

First, we read the 8 FCS files,

> if (require(rfcdmin)) {

+ ##Obtaining the location of the fcs files in the data

+ pathFiles<-system.file("bccrc", package="rfcdmin")

+ drugFiles<-dir(pathFiles)

+

+ ##Reading in the FCS files

+ drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)

+

+ ##Extract fluorescent information from the serie of FCS files

+ drug.fluors<-lapply(drugData,fluors)

+ }

8 fcs files read

Then, we can draw the different plots for the Foward SCatter parameter (varpos=1) of the cell line
aliquots treated with different compounds. As in the previous example, we can observe some noise in
the data.
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> ##Draw a density plot for the Foward SCatter parameter for the

> ##differents aliquots (of the same cell line) tested with different

> ##compounds.

> plotdensity.FCS(drugData,

+ varpos=c(1),

+ main="FSC for aliquots

+ treated with different compounds",

+ ylim=c(0,0.005),

+ ylab="Density of cells")
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Figure 4: plotdensity.FCS: Density of the Foward SCatter parameter of the cell line aliquots treated
with different compounds.
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> ##Draw a boxplot for the Foward SCatter parameter

> ##for the differents aliquots (of the same cell line)

> ##tested with different compounds.

> print( boxplot.FCS(drugData,

+ varpos=c(1),

+ col=c(1:8),

+ main="FSC of differents aliquots from

+ a cell line treated with different compounds."))
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Figure 5: boxplot.FCS: Boxplot of the Foward SCatter parameter of the cell line aliquots treated with
different compounds.
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> ##Draw a empirical cumulative density plot for the Foward scatter

> ##parameter for the differents aliquots (of the same cell line)

> ##treated with different compounds.

> print(plotECDF.FCS(drugData,

+ varpos=c(1),

+ var.list=c("Serie"),

+ group.list=paste("compound",c(1:8),sep=""),

+ main="ECDF for different aliquots

+ treated with diffrent compounds.",

+ lwd=2,

+ cex=1.5))
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Figure 6: plotECDF.FCS: Empirical cumulative distribution plot of the Foward SCatter parameter of
the cell line aliquots treated with different compounds.
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3 Data Visualizations

In this section, we include visualization tools that help analyze the multivariate flow cytometry data.
Because each cell has multiple immunofluoroescence and light scatter measurements, we have made
alternatives to visualize, beyond the ordinary bivariate scatterplots, the cell distributions based on the
different measurements. The common approach in the field circumvents the visualization of data on all
variables by selecting a subset of ”interesting” cells by a sequential progression of 1 and 2 dimensional
gating steps. Gating refers to the selection of a region of cells or observations in a bivariate or univariate
plot by placing boundaries around the region. These boundaries or thresholds based on a particular
immunofluoroescence or light scatter measurement are refered to as gates. The sequence of gating steps
is based on certain pairs of measurements or individual measurement, in which the gated region in a
previous step is subsequently gated further in the next gating step. First we discuss the bivariate and
multivariate plotting tools and then the gating tools.

3.1 Bivariate Plotting Tools

The basic bivariate plots are the ContourScatterPlot with hexgonal binning without contours or
rectangular binning with superimposed contour levels and the parallelCoordinates plot which is
either an ImageParCoord or a JointImageParCoord plot.

3.1.1 ContourScatterPlot

The plotvar.FCS has the options of plotting specified variables from an FCS R-object. A univariate
histogram or ContourScatterPlot with hexgonal binning or rectangular binning can be shown with the
appropriate specified options. Here we will demonstrate with the FCS R object unst.1829 the uses of
plotvar.FCS.
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> plotvar.FCS(unst.1829, varpos=c(1))
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Figure 7: plotvar.FCS: Plotting a single variable histogram with the unst.1829 FCS R object
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> plotvar.FCS(unst.1829, varpos=c(3,4), hexbin.CSPlot=FALSE)

Figure 8: plotvar.FCS: Plotting a bivariate ContourScatterPlot with rectangular binning with the
unst.1829 FCS R object

The function ContourScatterPlot will make an image plot using rectangular bins of counts pro-
duced by the function make.grid by default. Also by default, there are superimposed contour levels
that are also drawn on the plot with rectangular image binning. The make.grid function is used by
the ContourScatterPlot function to make an count matrix for the number of observations in a two-
dimensional grid layout. This function will output a matrix of counts (”z”) as well as the total number of
observations (”n.cells”) within this matrix. The count matrix for the image plot has 25 unit cut-offs and
can be changed by the x.grid and y.grid options. Alternatively, if there is a status or binary response
variable for the data, other values such as the difference in counts, proportions, normalized proportions,
and z statistics can be calculated by make.density for the rectangular bins of the image plot. Currently,
a roughly estimated color legend is available for this rectangular binning with the legend.CSP function.

Alternatively, however, there is an option for hexgonal binning with an appropriate legend. Note
that the Bioconductor hexbin package is necessary for this plot option. The hexagonal binning does not
have superimposed contour levels nor does it have the option to estimate other values besides counts in
its bins.

We will demonstrate the use of ContourScatterPlot to make the same plots exemplified earlier
with plotvar.FCS. These plots are not shown.

The following code extracts the third and the fourth column variables of the FCS R object unst.1829.

> ## obtain the two column variables

> xvar<-as(unst.1829[,3], "matrix")

> yvar<-as(unst.1829[,4], "matrix")

The ContourScatterPlot function is implemented to make a plot with hexgonal binning and a
legend. Other parameters such as binning style and number of bins can also be specified in the signature.

> ## hexagon cells without contour lines; default n.hexbins=100

> ContourScatterPlot(xvar, yvar,

+ xlab=unst.1829[["longnames"]][3],

+ ylab=unst.1829[["longnames"]][4],

+ main="Individual unst.1829",

+ hexbin.plotted=TRUE)

A plot can be made that has rectangular binning. The color of the image map (via the image.col
option) can be changed as well as the size of the rectangular bins by x.grid and y.grid options. A legend
can be displayed in a separate plot by setting the option plot.legend.CSP = TRUE.

> ## rectangular cells with the contour plot

> ContourScatterPlot(xvar, yvar,

+ xlab = unst.1829[["longnames"]][3],

+ ylab = unst.1829[["longnames"]][4],

+ main = "Individual 042402c1.053",

+ hexbin.plotted = FALSE,

+ numlev = 25,

+ image.col = heat.colors(15))
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3.2 Multivariate Plots

The FCS R-object can be plotted using the generic plot.FCS or plot command which will make a pairs
plot (by default) or a parallel coordinates plot. Here we show a default pairs plot using rectangular
binning :

> ## should be able to implement because it is a pairsplot

> print(plot(unst.1829))
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Figure 9: unst.1829: Default Pairs plotting with rectangular bins

The same plot can be made using hexagonal binning; the code is shown, but the plot will not be
displayed. This is currently broken.

> ## plot(st.1829, alternate.hexbinplot=TRUE)

Additional parameters for the pairsplot of a data matrix can be referenced by the pairs.CSP func-
tion. Currently a color legend can be plotted in the lower panels for pairs.CSP only for the rectangular
binning. There is currently no legend available for pairs.CSP using hexagonal binning.

The parallel coordinates plot tracks each observation whose value is plotted on the vertical, y-axis
through a series of variables on the horizontal, x-axis. The observation is tracked by a line from one
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variable to the next. The order of the column variables on the horizontal axis is the order that is
presented in the input data matrix.

Here we make a parallel coordinates plot for the data portion of the st.1829 FCS R-object. Because
there are too many cell or row observations, we only show the first 10 observations in this parallel
coordinates plot.

> par(mfrow=c(1,1))

> row.obs<-1:10

> parallelCoordinates(as(unst.1829[row.obs,], "matrix"))
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Figure 10: Parallel Coordinates plot of the first ten observations in the data of unst.1829.

It is important to note that all column variables in this plot must have the same range and scal-
ing. We can force scaling on a [0,1] scale by using the option scaled set to TRUE. We can also give
group certain observations by color (group.col), type (group.lty), and width (group.lwd) of line. New
observations can also be added at a time by setting superimpose to be TRUE or by using the function
add.parallelCoordinates. The following example shows these other options:

Because there are many cell or row observations, an ImageParCoord or JointImageParCoord plot
can be used to show all of the row observations by binning on the y-axis and having the different column
variables as labels on the x-axis. There are superimposed parallelCoordinates lines on the colored bin-
ning that demonstrate the movement of observations from one bin of one variable to another bin of the
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> row.obs<-1:10

> parallelCoordinates(as(unst.1829[row.obs,], "matrix"),

+ scaled=TRUE,

+ group=c(rep(1, 5), rep(2, 5)))
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Figure 11: Scaled Parallel Coordinates plot of the first ten observations in the data of unst.1829, where
the first 5 observations are in one group, and the next five observations are in the second group.
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next variable. In an ImageParCoord, these lines represent moves only between two adjacent variables,
and in a JointImageParCoord, the lines represent movement among all of the variables. The plots are
subject to change with the ordering of the column variables as labels on the x-axis of the plots. Addi-
tional parallelCoordinates lines can be added to any existing plot using the add.parallelCoordinates

function.
The following series of graphs exemplify the Image parallelCoordinates plots. Only the first 5 column

variables and the first 1000 observations will be shown.
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> ## need to separate legend plotting

> output1<-ImageParCoord(unst.1829@data[1:1000, 1:5],

+ num.bins=16,

+ title="1000 obs 16 bins 5 trans",

+ ntrans=5,

+ legend.plotted=FALSE,

+ plotted=TRUE,

+ image.plotted=TRUE,

+ lines.plotted=TRUE,

+ MY.DEBUG=FALSE)
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Figure 12: This plot is an Image Parallel Coordinates plot of the first 1000 observations and the first 5
column variables in the ”data” of unst.1829.
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The functions ImageParCoord and JointImageParCoord can also plot histograms and traditional
parallel coordinates plots as diagnostics in addition to or separately from the image parallel coordinates
plots when the option MY.DEBUG=TRUE .

> ## need to separate legend plotting

> output3<-JointImageParCoord(unst.1829@data[1:1000,1:5],

+ num.bins=16,

+ title="1000 obs 16 bins 5 trans",

+ ntrans=5,

+ legend.plotted=FALSE,

+ MY.DEBUG=FALSE)

3.3 Dynamic Plotting Tools

Another multi-dimensional tool is xgobi.FCS which uses the xgobi library. We will leave the example
for the user because the tool is interactive. Generally, by default xgobi.FCS will show the first 15
observations across all variables in the input data of the FCS R-object in a high-level multi-dimensional
plot, in which the user is able to shift among sets of variables, color certain observations, and rotate
visual perspectives of these observations amongst these variables. The function xgobi.FCS allows the
user to input the FCS R-object, subset amongst the row observations, and subset amongst the column
variables to show in an xgobi plot. Currently ggobi S4 objects are still being contructed and would
extend xgobi with more dynamic plotting and subsetting features.

The example code for the S3 xgobi.FCS is shown below but is left for the user to run separately. By
default, only the first 15 rows and half of the column variables are shown. If subset.row and subset.col
are specified, then these rows and columns will be displayed for the user to view interactively. In the
second example, the first 6000 rows with the first 2 column variables are shown.

> ## plots first 1/15 rows

> ## plots first 1/2 columns

> xgobi.FCS(unst.1829,

+ title="unst.1829 default subset")

> ## plots all the rows

> ## plots only the first 3 columns

> xgobi.FCS(unst.1829,

+ subset.row=1:6000,

+ subset.col=1:2,

+ title="unst.1829: 6000 rows, 2 vars")

4 Gating

slotnames description
1 gate matrix of column indices for row selection
2 history vector of strings describing columns in gate
3 extractGatedData.msg vector of strings describing extraction of the data
4 current.data.obs vector of the original row positions in current data
5 data matrix of column variables for rows denoting cells
6 metadata FCSmetadata object

Table 3: FCSgate slot descriptions
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slotnames description
1 uniscut univariate single cut
2 bipcut bivariate polygonal cut
3 bidcut bivariate double cut
4 biscut bivariate single cut
5 biscut.quadrant values denoting the quadrant to be selected
6 $+$/$+$, $+$/$-$, $-$/$-$, $+$/$-$

Table 4: Types of Gating

slotnames description
1 gateNum column position in ’gate’ matrix
2 gateName name of gate index
3 type type of gating
4 biscut.quadrant quadrant selected, if gating type is ’biscut’
5 data.colpos ’data’ column variable positions used in gating
6 data.colnames ’data’ names of the column variables used in gating
7 IndexValue.In value of the gating index denoting inclusion
8 gatingrange vector of gating thresholds
9 prev.gateNum gateNum of previous gating, if any

10 prev.gateName gateName of previous gating, if any
11 comment comment by user for this gating index

Table 5: Description of ’extractGateHistory’ output: Gating Details

The FCSgate class extends the S4 FCS class. The slots of the S4 FCSgate class are summarized in
Table 3. There are three aspects to gating that are summarized below:

Create Gating Index Initially, a gating index will be created. This binary index will denote the
selection of row observations in the data and will be appended as a column to the gate matrix.
The extension of the FCS object to a FCSgate object results from the S4 methods createGate and
icreateGate, an interactive method with user prompts for option values. Table 4 summarizes
the types of gates or cuts that can be used to select the data. Currently, there are only gates
involving one (i.e. univariate) or two (ie, bivariate) column variables of the data. A single or
double cut refers to the number of thresholds for each variable. For an example, if there is a
bidcut, then there are two thresholds for each of the two variables. The group of observations
lying within these bivariate thresholds are chosen. In the bivariate polygonal cut ”bipcut”, the
selection ranges describe a polygonal shape which could be a square or any other closed linear
shape description.

Extract Gated Data In order to collapse the data given the row selection index, the method ex-

tractGatedData will subset the data according to a specific value of the selection index (i.e.
IndexValue.In) and to a particular column in the gate matrix. Information about the extrac-
tion will be updated in the corresponding element of the extractGatedData.msg vector. The
metadata will also be updated in terms of row size and the ”original” flag will be set as FALSE.
The ”current.data.obs” will also be subset according to the selection index. In summary, the S4
method extractGatedData handles data collapsing with a corresponding row selection index of
a FCSgate class object.

Extract Gating Information The extractGateHistory will output a list of values and details of a
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particular gating index. Table 5 summarizes the descriptions of the gating information that is
extracted.

The following subsections exemplify the creation of a gating or selection binary index, the extraction
or subsetting of the data using this newly created gating index, the extraction of gating details, a
description of bivariate gating schemes, and other gating functions for high-dimensional plots.

See 6.1 for details about subsequent analyses after gating (Roederer and Hardy, 2001).

4.1 Creating Gate Index

Using createGate or the interactive icreateGate will result in a binary index that will be appended
to the gate matrix. We will use the FCS R-object unst.1829 for a following demonstration of gating.

First a bivariate double cut gate will be implemented and will capture the observations between 300
and 600 of the FSC-Height, first column variable of data, and the Side Scatter, second column variable
of data.

> gate.range.x <- c(300,600)

> gate.range.y <- c(300, 600)

> unst.1829.gate1 <- createGate(unst.1829,

+ varpos=c(1,2),

+ gatingrange=c(gate.range.x,

+ gate.range.y),

+ type="bidcut",

+ comment="first gate")

In order to see the gate, we use plotvar.FCS and showgate.FCS.
Currently, the showgate.FCS does not work with plotvar.FCS with thehexbin.CSPlot=TRUE op-

tion. The following is a hexbin ContourScatterPlot of the complete data before extraction on the
created gate. Note that the gating thresholds are not shown.

> par(mfrow=c(1,1))

> data.vars<-1:2

> plotvar.FCS(unst.1829.gate1, varpos=data.vars,

+ plotType="ContourScatterPlot",

+ hexbin.CSPlot=TRUE)

(Again, Sweave errors cause the above not to work here).
The gate for the can be shown with the original data with the following code:

> data.vars<-1:2

> plotvar.FCS(unst.1829.gate1, varpos=data.vars,

+ plotType="ContourScatterPlot",

+ hexbin.CSPlot=FALSE)

> showgate.FCS(unst.1829.gate1@data[,data.vars],

+ gatingrange= c(gate.range.x, gate.range.y),

+ Index = unst.1829.gate1@gate[,1],

+ type="bidcut", pchtype=".")

Alternatively, the corresponding icreateGate could be implemented that would make a plot and
prompt the user for information about the type of gate desired. If parameters such as the type of gate
and the gatingrange are known before looking at the data, these options can be input intoicreateGate,
and the plot will be shown.

39



The following plot and implementation describes the use of setting a univariate single cut gate for
selection of cells that are ≥ 500 in value for the 4th data column variable from those selected by the first
gate. The previous gate is the first column of gate and the selection value is 1 (i.e. prev.gateNum = 1
and prev.IndexV alue.In = 1). Setting prompt.all.options to FALSE will surpress other interactive
prompts for the title and gating color of the plot.

For a completely interactive gating session, the user can implement icreateGate on a FCS R-object
and input all plotting and gating options after each prompt.

4.2 Data Extraction from Gate Index

The extraction or row subsetting of the data matrix corresponding to a gating index is implemented by
extractGatedData.

The following extraction the data will use the first gating index (i.e. the first column of the gate
matrix specified with gateNum=1 ) and the selection value of 1 (i.e. selection of observations with
IndexValue.In=1 ).

> unst.1829.subset1.1 <- extractGatedData(unst.1829.gate2,

+ gateNum = 1,

+ IndexValue.In = 1,

+ MY.DEBUG = FALSE)

> unst.1829.subset1.2 <- extractGatedData(unst.1829.gate1,

+ gateNum=1,

+ IndexValue.In=1,

+ MY.DEBUG=FALSE)

Both the unst.1829.gate1 and unst.1829.gate2 are FCSgate objects with the same data but
different gate matrices. The generic method equals will only evaluate the equality of the data and
metadata slots and not of the gate matrix for FCSgate objects.

> equals(unst.1829.subset1.1,

+ unst.1829.subset1.2,

+ check.filename=FALSE,

+ check.objectname=FALSE)

[1] TRUE

Extraction using the second column index of the gate matrix (i.e. gateNum=2 ) and selecting those
with IndexValue.In=1 could be implemented on either a previously extracted FCSgate object or the
FCSgate object without extraction. The output unst.1829.subset.2.1 and unst.1829.subset2.2

should have the same data and metadata slots evaluated by equals.

> unst.1829.subset2.1 <- extractGatedData(unst.1829.subset1.1,

+ gateNum = 2,

+ IndexValue.In = 1,

+ MY.DEBUG = FALSE)

> unst.1829.subset2.2 <- extractGatedData(unst.1829.gate2,

+ gateNum = 2,

+ IndexValue.In = 1,

+ MY.DEBUG = FALSE)

> equals(unst.1829.subset2.1,

+ unst.1829.subset2.2,

+ check.filename=FALSE,

+ check.objectname=FALSE)

[1] TRUE
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> unst.1829.gate2 <- icreateGate(unst.1829.gate1, varpos=4,

+ gatingrange=500, type="uniscut",

+ prev.gateNum=1,

+ prev.IndexValue.In=1,

+ comment="", MY.DEBUG=FALSE,

+ prompt.all.options=FALSE)

[1] " plotvar.FCS: Making univariate histogram; Please Wait..."
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Figure 13: unst.1829: The gating index for fourth column variable of the data is shown. The row
observations beyond the vertical gate of 500 of uniscut are selected with an IndexValue.In=1 .
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4.3 Extraction of Gating Details from ”history”

The use of extractGateHistory extracts information for a particular gate index. The list output
provides an easy way to access the information that can be used as input for the functions createGate,
icreateGate, and extractGatedData in subsequent gating implementations.

The extraction of gating information before gated data extraction is shown in the for gates 1 and 2.

> info.gate1 <- extractGateHistory(unst.1829.gate2, gateNum=1)

> info.gate1

$gateNum

[1] 1

$gateName

[1] ""

$type

[1] "bidcut"

$biscut.quadrant

NULL

$data.colpos

[1] 1 2

$data.colnames

[1] "FSC-Height" "Side Scatter"

$IndexValue.In

[1] 1

$gatingrange

[1] 300 600 300 600

$prev.gateNum

[1] NA

$prev.gateName

[1] NA

$comment

[1] "first gate"

> info.gate2 <- extractGateHistory(unst.1829.gate2, gateNum=2)

> info.gate2

$gateNum

[1] 2

$gateName

[1] "uniscut.v4"

$type
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[1] "uniscut"

$biscut.quadrant

NULL

$data.colpos

[1] 4

$data.colnames

[1] "IFN"

$IndexValue.In

[1] 1

$gatingrange

[1] 500

$prev.gateNum

[1] 1

$prev.gateName

[1] ""

$comment

[1] ""

The extraction of gating information after implementing ”extractGatedData” provides the following
output for gates 1 and 2, respectively:

> info.gate1.1 <- extractGateHistory(unst.1829.subset2.1, gateNum=1)

> info.gate1.1

$gateNum

[1] 1

$gateName

[1] ""

$type

[1] "bidcut"

$biscut.quadrant

NULL

$data.colpos

[1] 1 2

$data.colnames

[1] "FSC-Height" "Side Scatter"

$IndexValue.In

[1] 1
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$gatingrange

[1] 300 600 300 600

$prev.gateNum

[1] NA

$prev.gateName

[1] NA

$comment

[1] "first gate"

> info.gate2.1 <- extractGateHistory(unst.1829.subset2.1, gateNum=2)

> info.gate2.1

$gateNum

[1] 2

$gateName

[1] "uniscut.v4"

$type

[1] "uniscut"

$biscut.quadrant

NULL

$data.colpos

[1] 4

$data.colnames

[1] "IFN"

$IndexValue.In

[1] 1

$gatingrange

[1] 500

$prev.gateNum

[1] 1

$prev.gateName

[1] ""

$comment

[1] ""

Suppose the next gate is a bivariate double cut on the 5th and 6th column variables of the ”data”ma-
trix. If this gate is implemented from the previous first gate, then this extracted information info.gate1

is used as well as info.gate1.1 to identify the previous gating information (i.e. previous.gateNum

and previous.IndexValue.In in the example).
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> gate.range.x <- c(200, 300)

> gate.range.y <- c(100, 500)

> previous.gateNum <- info.gate1$gateNum

> previous.IndexValue.In <-info.gate1$InexValue.In

> unst.1829.gate3 <- createGate(unst.1829.gate2,

+ varpos = c(1,2),

+ gatingrange = c(gate.range.x, gate.range.y),

+ type="bidcut",

+ prev.gateNum = previous.gateNum,

+ prev.IndexValue.In = previous.IndexValue.In,

+ comment="first gate")

> extractGateHistory(unst.1829.gate3, gateNum=3)

$gateNum

[1] 3

$gateName

[1] "bidcut.v1v2"

$type

[1] "bidcut"

$biscut.quadrant

NULL

$data.colpos

[1] 1 2

$data.colnames

[1] "FSC-Height" "Side Scatter"

$IndexValue.In

[1] 1

$gatingrange

[1] 200 300 100 500

$prev.gateNum

[1] 1

$prev.gateName

[1] ""

$comment

[1] "first gate"

Subsequent data extraction can be made on the FCSgate object unst.1829.gate3 using extract-

GatedData given a particular gate index column in the gate matrix.
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4.4 Gating Schemes

The FHCRC.HTVNFCS and the VRC.HVTNFCS are functions that implement icreateGate and extract-

GatedData as example gating procedures (Roederer and Hardy, 2001).
The user will be prompted for gating and plotting input with the following examples and associated

FCS R objects (shown and not demonstrated).

> MC.053.gt <- FHCRC.HVTNFCS(MC.053)

> MC.054.gt <- FHCRC.HVTNFCS(MC.054)

> MC.055.gt <- FHCRC.HVTNFCS(MC.055)

> st.1829.gt <- VRC.HVTNFCS(st.1829)

> unst.1829.gt <- VRC.HVTNFCS(unst.1829)

> st.DRT.gt <- VRC.HVTNFCS(st.DRT)

> unst.DRT.gt <- VRC.HVTNFCS(unst.DRT)

If the user decides to implement one of the example gating schemes on his or her own FCS R object,
the column variable positions can be adjusted for each gate implementation such that the variables to
be gated may remain the same. The following example shows that for gate 2, column variable positions
7 and 5 refer to cd3 and cd8, respectively for that data matrix of MC.053, the FCS object to be gated.
Likewise, column variable positions that correspond to cd69 and INFgamma are 4 and 3.

> data(MC.053min)

> MC.053[["longnames"]]

> FHCRC.HVTNFCS(MC.053, gate2.vars=c(7,5), gate3.vars=c(4,3))

4.5 Other Image Gating

There are other gating procedures that can be implemented on high-dimensional plots. The gate.IPC

interactive function allows the user to click on upper and lower bin boundaries for a particular variable
to subset. The subsequent graphs represent this subset of points that move from one variable to the
next. The following code will be left for the user to implement as an exercise.

> st.DRT2 <- st.DRT

> st.DRT2@data <- st.DRT@data[1:1000,]

> gate.IPC(st.DRT2, 3,

+ hist.plotted=FALSE,

+ image.plotted=TRUE,

+ para.plotted=FALSE,

+ lines.plotted=TRUE,

+ MY.DEBUG=FALSE)

Currently, there is still work in progress to gate on the dynamic plots ggobi and xgobi. See Section
3.3 for basic plotting usage.

5 Exploratory Data Analysis

The user may decide to use more qualitative means to investigate the data. The Patient Rule Induction
Method (PRIM) allows the extraction of rules defined as subsets that maximizes or minimizes a target
function which is usually specified as the mean of a binary label (Friedman and Fisher, 1998). In the
flow cytometry setting, this target function is the mean of binary HIV-protein stimulated (Y=1) or
unstimulated status (Y=0) for a particular immunofluoroescence data subset or box, which ultimately
estimates a rule through iterative trimmings of the box in the greedy, top-down Peeling Step and iterative
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additions into the box during the patient Expansion Step. A Cross-Validation Step implements the same
Peeling and Expansion Steps on Testdata Sets. Hence, the estimated rules aim at finding distributional
differences between the HIV-protein stimulated and unstimulated cells in a multi-dimensional setting
where many different immunofluoroescence measurements are made on the same sample of cells from
an individual in an HIV vaccine trial. Again, the results of PRIM are only exploratory because it is
a qualitative process that needs subjective, sound judgments to arrive at conclusions for each step of
PRIM. PRIM is regarded as a tool for hypothesis generation rather than for inference.

Please refer to the ”PRIM.pdf” manual in the rfcprim package for details regarding the functions
used on the data component of the FCS R-objects.
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6 Flow Cytometry Statistical Testing and Inference

The testing tools in this section are used to evaluate differences between HIV-protein stimulated and
unstimulated scenarios, particularly in the IFNgamma measurement after gating described by Roederer
and Hardy (2001).

Each subsection describes particular tests that are implemented by runflowcytests and other func-
tions.

6.1 Probability Binning

The current S3-class object ProbBin.FCS describes the equal probability binning of a univariate, im-
munofluoroescence measurement (usually of IFN-gamma) after the implementation of a series of gating
schemes across different immunofluorescence measurements. Equal probability binning ensures that
there are equal number of observations, N, within a bin across all bins constructed by cut-offs or inte-
ger breakpoints of the immunofluorescence measurement. The final bin may contain more or less than
N, the pre-specified number within each bin. The function, breakpoints.ProbBin.FCS, makes the
breakpoints or cut-offs for equal probability binning in two ways:

combined based on the combination of the univariate distributions (usually of INF-gamma) of both
the HIV-protein stimulated and unstimulated samples of cells

by.control based on only the unstimulated HIV-protein sample. These breakpoints are then used to
make histogram objects from both the HIV-protein stimulated and unstimulated cell samples from
an individual (Roederer and Hardy, 2001).

slotnames description
1 unst.hist unstimulated histogram
2 st.hist stimulated histogram
3 PB ’combined’/’by.control’
4 N.in.bin number per bin for cut-off construction
5 varname name of distribution/variable

Table 6: Description of ’ProbBin.FCS’ S3 list output

The ProbBin.FCS object is a S3 list of the following components in Table 6
We will construct two gated objects as described in Section 4. The stimulated gated object is

st.DRT.gt and the unstimulated gated object is unst.DRT.gt. Here we will only gate on the bivariate
double cut that extracts the lymphocytes from the Forward Scatter and Side Scatter measurements.
Then we will extract the ”IFN-gamma”measurment from each sample and then construct a ProbBin.FCS
object.

The following implements a ”bidcut” gate and plots the image with the gate.
We could choose to implement subsequent gates; each gate that is dependent on the selection of

a previous gate. We leave further gating as an exercise for the user. Below is an extraction of the
data from the cd3+ lymphocytes (i.e. from the second gate of cd3+ cells based on the selection of
lymphocytes in the first gate).

> unst.DRT.ex <- extractGatedData(unst.DRT.gt, gateNum=2)

> st.DRT.ex <- extractGatedData(st.DRT.gt, gateNum=2)

We decide to analyze the IFN-gamma distribution among the selected cells. We obtain this measure-
ment, IFN.unst and IFN.st, from the HIV-protein unstimulated and stimulated samples of individual
DRT, respectively.
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> unst.DRT.gt <- icreateGate(unst.DRT, varpos=c(1,2),

+ gatingrange=c(300,650, 300, 500), type="bidcut",

+ comment="", MY.DEBUG=FALSE,

+ prompt.all.options=FALSE)
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Figure 14: unst.DRT.gt: The gating index for first two column variables of the data is shown for the
selection of the central cluster of lymphocytes. The colored points in the center of the bidcut are selected
with an IndexValue.In = 1 .
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> st.DRT.gt <- icreateGate(st.DRT, varpos=c(1,2),

+ gatingrange=c(300,650, 300, 500), type="bidcut",

+ comment="", MY.DEBUG=FALSE,

+ prompt.all.options=FALSE)
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Figure 15: st.DRT.gt: The gating index for first two column variables of the data is shown for the
selection of the central cluster of lymphocytes. The colored points in the center of the bidcut are
selected with an IndexValue.In=1.
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> unst.DRT.gt <- icreateGate(unst.DRT.gt, varpos=c(7,5),

+ gatingrange=c(500,1024, 0, 1024), type="bidcut",

+ prev.gateNum=1, prev.IndexValue.In=1,

+ comment="", MY.DEBUG=FALSE,

+ prompt.all.options=FALSE)
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Figure 16: unst.DRT.gt: The gating index for 7th and 5th column variables of the data is shown for the
selection of cd3+ cells based on the previous gating and selection of lymphocytes (i.e.prev.gateNum=1 ,
prev.IndexValue.In=1 ). The colored points of the bidcut gate are selected with an IndexValue.In = 1 .
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> st.DRT.gt <- icreateGate(st.DRT.gt,

+ varpos=c(7,5),

+ gatingrange=c(500,1024, 0, 1024),

+ type="bidcut",

+ prev.gateNum=1,

+ prev.IndexValue.In=1,

+ comment="",

+ MY.DEBUG=FALSE,

+ prompt.all.options=FALSE)
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Figure 17: st.DRT.gt: The gating index for the 7th and 5th column variables of the data is shown for
the selection of cd3+ based on the previous gating and selection of lymphocytes (ie, prev.gateNum=1 ,
prev.IndexValue.In = 1 ). The colored points the bidcut gate are selected with an IndexValue.In = 1 .
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> IFN.unst <- unlist(as(unst.DRT.ex[,4], "matrix"))

> IFN.st <- unlist(as(st.DRT.ex[,4], "matrix"))

These two distributions are used to implement probability binning by.control with 100 observations
in each bin based on the control, unstimulated group:

> PB.by.control <- ProbBin.FCS(IFN.unst,

+ IFN.st, 100,

+ varname=unst.DRT[["longnames"]][4],

+ PBspec="by.control",

+ MY.DEBUG=FALSE)

Alternatively, these two IFN distributions could have been used to implement probability binning
constructed by the combined data having 100 observations in each bin:

> PB.combined <- ProbBin.FCS(IFN.unst,

+ IFN.st, 100,

+ varname=unst.DRT[["longnames"]][4],

+ PBspec="combined",

+ MY.DEBUG=FALSE)

To verify the ProbBin.FCS class objects, the following code using is can be used:

> is(PB.by.control, "ProbBin.FCS")

[1] TRUE

> is(PB.combined, "ProbBin.FCS")

[1] TRUE

We show the following ProbBin.FCS plots of the PB.by.control” object.
The statistics associated with testing the two distributions for differences, assuming the null of no

difference between the stimulated and unstimulated samples can be referenced in (Roederer et al., 2001;
Baggerly, 2001). The summary of a ProbBin.FCS object will produce statistics that test the difference
between the distributions of the stimulated and unstimulated samples. See Section 6.2.

> summary(PB.by.control)

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the

statistically the same as the Stimulated Data Histogram/Bins;

both samples are from the same distribution

Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins

are significantly different from the Stimulated Data Histogram/Bins;

the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100

in each bin in the control dataset

Note: The counts in the first bin may be greater than 100

because of abundance of zero data.

The counts in the bins are not shown because there are too many bins.

53



> plot(PB.by.control, plots.made="unstimulated", freq=TRUE)
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Figure 18: PB.by.control: The histogram shows the equal probability that was implemented on the
unstimulated or control IFNgamma data. Here the counts in each bin are about 100

54



> plot(PB.by.control, plots.made="stimulated", freq=TRUE)
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Figure 19: PB.by.control: The histogram shows the equal probability that was implemented on the
unstimulated or control IFNgamma data of which whose breaks are applied to the stimulated data
(which is shown in the above histogram). Here the counts in each bin can be shown setting the options
freq=TRUE and labels=TRUE, which will prompt a warning because the binning is not equidistant.
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Number of Control: 38380

Number of Stimulated: 48304

Test1: T.chi.unadj

=max(0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01033143

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 8.388503

one-sided p value (p.val.1tail.z.unadj): 2.461853e-17

two-sided p value (p.val.2tail.z.unadj): 4.923706e-17

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:

adjusted PB metric (PBmetric.adj): 441.916

degrees of freedom (PB.df): 260

upper tail p value (p.val.1tail.chi.adj): 1.357756e-11

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:

Adjusted T.chi.unadj (T.chi.adj): 7.977543

one-sided p value (p.val.1tail.z.adj): 7.46373e-16

two-sided p value (p.val.2tail.z.adj): 1.492746e-15

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)

X-squared = 432.4261, df = 260, p-value = 9.778e-11

upper tail p value when df= 260 : pearson.p.val.PBdf= 9.778019e-11

> summary(PB.combined)

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the

statistically the same as the Stimulated Data Histogram/Bins;

both samples are from the same distribution

Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins

are significantly different from the Stimulated Data Histogram/Bins;

the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100

in each bin in the combined (control & stimulated) dataset

Note: The counts in the first bin may be greater than 100

because of abundance of zero data.

The counts in the bins are not shown because there are too many bins.

Number of Control: 38380

Number of Stimulated: 48304

Test1: T.chi.unadj
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=max(0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01259746

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 9.209693

one-sided p value (p.val.1tail.z.unadj): 1.635294e-20

two-sided p value (p.val.2tail.z.unadj): 3.270588e-20

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:

adjusted PB metric (PBmetric.adj): 538.8427

degrees of freedom (PB.df): 318

upper tail p value (p.val.1tail.chi.adj): 1.289152e-13

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:

Adjusted T.chi.unadj (T.chi.adj): 8.756982

one-sided p value (p.val.1tail.z.adj): 1.002741e-18

two-sided p value (p.val.2tail.z.adj): 2.005483e-18

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)

X-squared = 522.0144, df = 318, p-value = 4.044e-12

upper tail p value when df= 318 : pearson.p.val.PBdf= 4.044095e-12

6.2 Testing for the difference between two univariate distributions

This section describes the tools used to test for the difference between the HIV-protein stimulated
sample and the HIV-protein unstimulated sample in terms of the distribution of an immunofluoroescence
measurement and, in particular, of the IFN-gamma measurement. There have been four main testing
approaches that are outlined belowed. The null hypothesis is the assumption that both samples originate
from the same distribution (i.e., there is no difference in two distributions), and the alternative is that
they are from different distributions (i.e., the stimulated scenario compared to the unstimulated scenario
are different in terms of cell densities).

WLR.flowcytest The weighted log rank test (by default when rho=0) tests the difference in survival
curves of the stimulated and unstimulated scenarios when all measurements are regarded as having
the ”event” and ”time” is considered to be the IFN-gamma or other immunofluorescence measure-
ment. Thus, at every point on the immunofluorescence, the curves are tested for differences. A
plot of the survival curves for both samples is also optionally output.

KS.flowcytest Kolmogorov-Smirnoff test also evaluates the difference in distributions for the control
and the stimulated samples, but may be more sensitive and result in a higher false positive rate
when there are a larger number of data points.

ProbBin.flowcytest Statistics proposed by Keith A. Baggerly and Mario Roederer include Chi-
squared and Normal tests for the PB metric via probability binning (both based on the control
data only (”by.control”) and based on the combined dataset of both the stimulated and the control
samples (”combined”) (Roederer et al., 2001; Baggerly, 2001).
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pkci2.flowcytest The method, proposed by Zoe Moodie, PhD, tests the difference of the upper tails of
the two distributions rather than the range of the distribution for IFN-gamma or other univariate
immunofluorescence measurement.

runflowcytests This function will run all of the aforementioned tests either separately or together in
one call.

As a single example implementing all of the testing tools, we will only demonstrate the testing
with the runflowcytests. Further documentation for each individual test can be obtained in the
help documentation for the following tests: WLR.flowcytest, KS.flowcytest, ProbBin.flowcytest,
pkci2.flowcytest. Please note that ProbBin.flowcytest provides the same statistical output as
summary.ProbBin.FCS.

> output.runflowcytests <- runflowcytests(IFN.unst,

+ IFN.st,

+ KS.plotted=FALSE,

+ WLR.plotted=FALSE,

+ PBobj.plotted=FALSE)

FLOWCYTEST: Weighted Log Rank Test

experimental.status=0 (control)

experimental.status=1 (stimulated)

Call:

survdiff(formula = Surv(fluorescence) ~ experimental.status,

data = my.dataframe, na.action = na.action.WLR, rho = rho.test)

N Observed Expected (O-E)^2/E (O-E)^2/V

experimental.status=0 38380 38380 38094 2.15 3.93

experimental.status=1 48304 48304 48590 1.68 3.93

Chisq= 3.9 on 1 degrees of freedom, p= 0.0475

FLOWCYTEST: KOLMOGOROV-SMIRNOV

Two-sample Kolmogorov-Smirnov test

data: controldata and stimuldata

D = 0.0178, p-value = 2.625e-06

alternative hypothesis: two-sided

FLOWCYTEST: BAGGERLY & ROEDERER STATS

Number of observations in each bin: 100

Dataset used for Probability Binning: by.control
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Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the

statistically the same as the Stimulated Data Histogram/Bins;

both samples are from the same distribution

Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins

are significantly different from the Stimulated Data Histogram/Bins;

the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100

in each bin in the control dataset

Note: The counts in the first bin may be greater than 100

because of abundance of zero data.

The counts in the bins are not shown because there are too many bins.

Number of Control: 38380

Number of Stimulated: 48304

Test1: T.chi.unadj

=max(0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01033143

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 8.388503

one-sided p value (p.val.1tail.z.unadj): 2.461853e-17

two-sided p value (p.val.2tail.z.unadj): 4.923706e-17

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:

adjusted PB metric (PBmetric.adj): 441.916

degrees of freedom (PB.df): 260

upper tail p value (p.val.1tail.chi.adj): 1.357756e-11

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:

Adjusted T.chi.unadj (T.chi.adj): 7.977543

one-sided p value (p.val.1tail.z.adj): 7.46373e-16

two-sided p value (p.val.2tail.z.adj): 1.492746e-15

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)

X-squared = 432.4261, df = 260, p-value = 9.778e-11

upper tail p value when df= 260 : pearson.p.val.PBdf= 9.778019e-11

FLOWCYTEST: BAGGERLY & ROEDERER STATS
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Number of observations in each bin: 100

Dataset used for Probability Binning: combined

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the

statistically the same as the Stimulated Data Histogram/Bins;

both samples are from the same distribution

Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins

are significantly different from the Stimulated Data Histogram/Bins;

the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100

in each bin in the combined (control & stimulated) dataset

Note: The counts in the first bin may be greater than 100

because of abundance of zero data.

The counts in the bins are not shown because there are too many bins.

Number of Control: 38380

Number of Stimulated: 48304

Test1: T.chi.unadj

=max(0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01259746

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 9.209693

one-sided p value (p.val.1tail.z.unadj): 1.635294e-20

two-sided p value (p.val.2tail.z.unadj): 3.270588e-20

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:

adjusted PB metric (PBmetric.adj): 538.8427

degrees of freedom (PB.df): 318

upper tail p value (p.val.1tail.chi.adj): 1.289152e-13

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:

Adjusted T.chi.unadj (T.chi.adj): 8.756982

one-sided p value (p.val.1tail.z.adj): 1.002741e-18

two-sided p value (p.val.2tail.z.adj): 2.005483e-18

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)

X-squared = 522.0144, df = 318, p-value = 4.044e-12

upper tail p value when df= 318 : pearson.p.val.PBdf= 4.044095e-12
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FLOWCYTEST: PKCI2

Test pkci2: Standard Normal approximation of two-sample binomial statistics

[1] "k.hat, 377 ,is the gate/percentile based on the control data"

[1] " and the user specified critical proportion of, crit"

[1] "0.00629 ,ps.hat is the proportion of stimulated data above k.hat"

[1] "0.00099 , pc.hat is the proportion of the control data above k.hat,"

Null: H0: ps.hat = pc.hat OR ps.hat-pc.hat = 0

One-sided Alternative: H1.1: ps.hat - pc.hat > 0 OR ps.hat > pc.hat

Two-Sided Alternative: H1.2: ps.hat - pc.hat != 0

Standard Normal Z Statistic: 13.4601429047812

One sided p-value: 1.34198315289743e-41

Two sided p-value: 2.68396630579485e-41

95 % Confidence Interval: ( 0.004531 , 0.006076 )

One sided Test:H1.1 (1=reject H0, 0=cannot reject H0): 1

Two sided Test:H1.2 (1=reject H0, 0=cannot reject H0): 1

The plots and output for the KS.flowcytest and the WLR.flowcytest are shown with the code on
the following pages. The plots for the ProbBin.flowcytest is similar to those shown in Figure 18 and
Figure 19.
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> output.KSflowcytest <- KS.flowcytest(IFN.unst,

+ IFN.st,

+ KS.plotted=TRUE,

+ MY.DEBUG=FALSE)
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Figure 20: KS.flowcytest plot shows the distributions of the stimulated and unstimulated samples.
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> output.WLRflowcytest <- WLR.flowcytest(IFN.unst,

+ IFN.st,

+ WLR.plotted=TRUE,

+ MY.DEBUG=FALSE)

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

:Survival Curve

P
ro

po
rt

io
n 

be
yo

nd
 

Figure 21: WLR.flowcytest plot shows the survival curves for the two distributions if every data point
was regarded as being an event, and time was regarded as the IFN-gamma measurement.

6.3 ROC curves for testing tails of two distributions

For each individual there is a pair of data corresponding to a HIV-protein stimulated sample and a
HIV-protein unstimulated/control sample. For each individual who is either HIV-positive or negative,
the 99.9-th percentile for the unstimulated sample and the percent positive for the stimulated sample
based on this control-based 99.9-th percentile was calculated. Here we exemplify the calculations for
the IFN.st and the IFN.unst obtained from the gating for the HIV-negative individual 1829.

First, using percentile.FCS, we obtain the 99.9-th percentile based on the control, unstimulated
sample.

> unst.percentile <- percentile.FCS(IFN.unst, percent=0.999)
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Now using PercentPos.FCS, we obtain the percent positives for both the unstimulated and the
stimulated samples, respectively, using the unst.percentile. Note that the percent positive for the control
sample is about 1 - 0.999.

> PercentPos.FCS(IFN.unst, percentile=unst.percentile)$percent.pos

[1] 0.001068265

> PercentPos.FCS(IFN.st, percentile = unst.percentile)$percent.pos

[1] 0.006417688

To evaluate which HIV-protein stimulation results in the most sensitive detection of HIV-positive
status as well as the lowest chance of falsely concluding HIV-positive status based on a stimulated
sample’s higher 99.9th percentile control-based percent positive (i.e., according to the approach used
in pcki2.flowcytest). Zoe Moodie, PhD, constructed the ROC (Receiver Operating Characteristic)
HIV-protein-specific curves in which the cut-offs are based on the combined stimulated and unstimulated
percent positives obtained by the previous methods.

The PerPosROCmin data in the rfcdmin package exemplifies the percent positives obtained to plot
the ROC curve.

Here we retrieve the example data provided by Zoe Moodie, PhD.

> data(PerPosROCmin, package="rfcdmin")

The function ROC.FCS shows the ROC curve and sensitivity, specificity output after the imple-
mentation of the functions percentile.FCS and PercentPos.FCS to obtain the percentiles and the
percent positives, respectively, for each individual’s HIV-protein stimulated and unstimulated pair for
a particular immunofluorescence measurement.

64



> GAG<-ROC.FCS(hivpos.gag, hivneg.gag)

> #plotting the pola stimulated 100* percent positives

> POLA<-ROC.FCS(hivpos.pola, hivneg.pola, lineopt=2, colopt=2, overlay=TRUE)

> #plotting the polb stimulated 100* percent positives

> POLB<-ROC.FCS(hivpos.polb, hivneg.polb, lineopt=4, colopt=3, overlay=TRUE)

> legend(0.7, 0.7, c("gag", "polA", "polB"), col = c(1,2,3), lty=c(1,2,4))
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Figure 22: The ROC curves are based on the different HIV-proteins used for the stimulation of immune
responses. Here the GAG appears to achieve greater sensitivity at a lower 1-specificity when evaluating
the difference in immune responses between an HIV-infected and HIV-noninfected profiles using the
pkci2.flowcytest approach.

65



7 Future Updates

Most notable future updates include converting the testing and the gating into generic S4 class objects.
Currently these objects are all S3.

The dynamic plotting functions will also be converted to S4 generic objects with additional visual-
ization tools and methods.

Future work with PRIM include using the algorithm with real datasets and displaying the results
with the tools provided in the rflowcyt package.
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