flowWorkspace: A Package for Importing flowJo
Workspaces into R

Greg Finak <gfinak@thcrc.org>

January 25, 2012

1 Purpose

The purpose of this package is to provide functionality to import relatively
simple flowJo workspaces into R. By this we mean, accessing the sam-
ples, groups, transformations, compensation matrices, gates, and population
statistics in the flowJo workspace, and replicating these using (primarily)
flowCore functionality.

2 Why Another flowJo Workspace Import Pack-
age?

There was a need to import flowJo workspaces into R for comparative gating.
The flowFlowJo package did not meet our needs. Many groups have legacy
data with associated flowJo XML workspace files in version 2.0 format that
they would like to access using BioConductor’s tools. Hopefully this package
will fill that need.

3 Support

This package supports importing of Version 2.0 XML workspaces only.
We cannot import .jo files directly. You will have to save them in XML
workspace format, and ensure that that format is workspace version 2.0.
The package has been tested and works with files generated using flowJo
version 9.1 on Mac OS X. XML generated by older versions of flowJo on
windows should work as well. We do not yet support flowJo’s Chimera
XML schema, though that support will be provided in the future.

The package supports import of only a subset of the features present in a
flowJo workspace. The package allows importing of sample and group names,
gating hierarchy, compensation matrices, data transformation functions, a
subset of gates, and population counts.

BooleanGates are now supported by flowWorkspace.

4 Data Structures

The following section walks through opening and importing a flowJo workspace.

4.1 Loading the library
Simply call:
> library(flowWorkspace)

Scalable Robust Estimators with High Breakdown Point (version 1.3-01)

The library depends on numerous other packages, including graph, XML,
Rgraphviz, flowCore, flowViz, RBGL.

4.2 Opening a Workspace

We represent flowJo workspaces using flowJoWorkspace objects. We only
need to know the path to, and filename of the flowJo workspace.

> d<-system.file("extdata",package="flowWorkspaceData") ;
> wsfile<-list.files(d,pattern="A2004Analysis.xml",full=T)

In order to open this workspace we call:

> ws<-openWorkspace (wsfile)
> summary (ws)

FlowJo Workspace Version 2.0

File location: /loc/home/biocbuild/bbs-2.9-bioc/R/library/flowWorkspaceData/extdata
File name: A2004Analysis.xml

Workspace is open.

Groups in Workspace
Name Num.Samples
1 All Samples 2

We see that this a version 2.0 workspace file. It’s location and filename
are printed. Additionally, you are notified that the workspace file is open.
This refers to the fact that the XML document is internally represented
using 'C’ data structures from the XML package. After importing the file,
the workspace must be explicitly closed using closeWorkspace() in order
to free up that memory.

4.3 Parsing the Workspace

With the workspace file open, we have not yet imported the XML document.
The next step parses the XML workspace and creates R data structures to
represent some of the information therein. Specifically, by calling parse-
Workspace () the user will be presented with a list of groups in the workspace
file and need to choose one group to import. Why only one? Because of the
way flowJo handles data transformation and compensation. Each group of
samples is associated with a compensation matrix and specific data trans-
formation. These are applied to all samples in the group. When a particular
group of samples is imported, the package generates a GatingHierarchy for
each sample, describing the set of gates applied to the data (note: polygons,
rectangles, quadrants, and ovals and boolean gates are supported). The set
of GatingHierarchies for the group of samples is stored in a GatingSet ob-
ject. Calling parseWorkspace () is quite verbose, informing the user as each
gate is created. The parsing can also be done non—interactively by speci-
fying which group to import directly in the function call (either an index
or a group name). An additional optional argument execute=T/F specifies
whether you want to load, compensate, transform the data and compute
statistics immediately after parsing the XML tree.

> G<-parselWorkspace (ws,name=1, execute=TRUE, path=ws@path, isNcdf=FALSE, cleanup=FALSE, ke
> #Lots of output here suppressed for the vignette.

When isNcdf flag is set TRUE,the data is stored in ncdf format on disc.

> G

A GatingSet with 2 samples

1. FCS File: a2004_01T2pb05i_A1_AO1l.fcs
GatingHierarchy with 20 gates

2 . FCS File: a2004_01T2pb05i_A2_A02.fcs

GatingHierarchy with 20 gates

We have generated a GatingSet with 2 samples, each of which has 19
associated gates. Subsets of gating hierarchies can be accessed using the
standard R subset syntax.

At this point we have parsed the workspace file and generate the gating
hierarchy associated with each sample imported from the file. The data
have been loaded, compensated, and transformed in the workspace, since we
passed execute=TRUE to the parseWorkspace() function. This can also be
done separately via the execute () method, which takes a GatingHierarchy
and the flowJoWorkspace that generated it, as arguments. It returns a
GatingHierarchy with additional data attached to each node of the hierarchy
(population counts, membership indices, and a flowFrame.

> G<-lapply(G,function(x)execute(x))

We can plot the gating hierarchy for a given sample:

> plot(G[[11]1)

IFNa+
IL-6+
B Cell
IL-12+
/////Z mpc [
/ \
APC TNFa+
/////.7 \\\\\x IFNa+
_ >
a2004_01T2pb05i |—> | Live |—> | CD14-MHC2- pDC
~
IL-6+
IFNa+
IL-12+
Monocytes ——> | IL-6+
\\A TNFa+
IL-12+
TNFa+

We can list the nodes (populations) in the gating hierarchy:

> getNodes (G[[1]])

[1] "a2004_01T2pb05i" "3.Live" "4 . APC" "5.B Cell"
(5] "6.mDC" "7 .IFNa+" "8.IL-6+" "9.IL-12+"
[9] "10.TNFa+" "11.pDC" "12.IFNa+" "13.IL-6+"
[13] "14.IL-12+" "15.TNFa+" "16.CD14-MHC2-" "17.Monocytes"
[17] "18.IFNa+" "19.IL-6+" "20.IL-12+" "21.TNFa+"

Note that the number preceding the period in the node names is just an
identifier to help uniquely label populations in the gating hierarchy. It does
not represent any information about population statistics. We can get a
specific gate definition:

> getGate(G[[1]],getNodes(G[[1]]) [3])

Polygonal gate '4.APC' with 14 vertices in dimensions <PerCP-CY5-5-A> and <PE-CY7-A>
We can extract the dimensions relating to a specific gate:

> getDimensions(G[[1]],getNodes(G[[1]]) [3])

[1] "<PerCP-CY5-5-A>" "<PE-CY7-A>"

We can extract vertices of a gate:

> getBoundaries(G[[1]],getNodes (G[[1]]) [3])

<PerCP-CY5-5-A> <PE-CY7-A>

[1,] 2349.993 2024.8746
[2,] 2163.383 1575.0085
[3,] 2240.899 992.3135
[4,] 2349.993 793.0647
[5,] 2585.516 696.7596
(6,] 3315.004 1138.4273
(7,1 3586.426 1354.9513
(8,] 3602.373 2040.1931
[9,] 3570.480 2256.4455
[10,] 3363.261 2318.7616
[11,] 3204.000 2240.8992
[12,] 3044.921 2209.8486
[13,] 2711.845 2070.8857
[14,] 2569.755 2055.5302

We can get the population proportion (relative to its parent) for a single
population:

> getProp(G[[1]],getNodes(G[[1]]) [3])

TRUE
0.08402716

Or we can retrieve the population statistics for all populations in the
sample:

> getPopStats(G[[1]])

flowCore.freq flowJo.count flowCore.count

a2004_01T2pb05i_A1_AO1.fcs 1.000000000 61832 61832
/Live 0.800297581 49542 49484
/Live/Monocytes 0.058928138 2931 2916
/Live/Monocytes/TNFa+ 0.250685871 754 731
/Live/Monocytes/IL-12+ 0.047325103 146 138
/Live/Monocytes/IL-6+ 0.237654321 694 693
/Live/Monocytes/IFNa+ 0.003772291 13 11
/Live/CD14-MHC2- 0.499757497 26795 24730
/Live/APC 0.084027160 4141 4158
/Live/APC/pDC 0.104377104 446 434
/Live/APC/pDC/TNFa+ 0.000000000 0 0
/Live/APC/pDC/IL-12+ 0.571428571 250 248
/Live/APC/pDC/IL-6+ 0.000000000 0 0
/Live/APC/pDC/IFNa+ 0.002304147 1 1
/Live/APC/mDC 0.122174122 502 508
/Live/APC/mDC/TNFa+ 0.141732283 71 72
/Live/APC/mDC/IL-12+ 0.0059056512 2 3
/Live/APC/mDC/IL-6+ 0.043307087 22 22
/Live/APC/mDC/IFNa+ 0.005906512 2 3
/Live/APC/B Cell 0.525493025 2271 2185
parent.total node
a2004_01T2pb05i_A1_AO1.fcs 61832 a2004_01T2pb05i1
/Live 61832 3.Live
/Live/Monocytes 49484 17 .Monocytes
/Live/Monocytes/TNFa+ 2916 21.TNFa+
/Live/Monocytes/IL-12+ 2916 20.IL-12+
/Live/Monocytes/IL-6+ 2916 19.IL-6+

/Live/Monocytes/IFNa+ 2916 18.IFNa+

/Live/CD14-MHC2- 49484 16.CD14-MHC2-
/Live/APC 49484 4.APC
/Live/APC/pDC 4158 11.pDC
/Live/APC/pDC/TNFa+ 434 15.TNFa+
/Live/APC/pDC/IL-12+ 434 14.IL-12+
/Live/APC/pDC/IL-6+ 434 13.IL-6+
/Live/APC/pDC/IFNa+ 434 12.IFNa+
/Live/APC/mDC 4158 6.mDC
/Live/APC/mDC/TNFa+ 508 10.TNFa+
/Live/APC/mDC/IL-12+ 508 9.IL-12+
/Live/APC/mDC/IL-6+ 508 8.IL-6+
/Live/APC/mDC/IFNa+ 508 7.IFNa+
/Live/APC/B Cell 4158 5.B Cell

We can plot the coefficients of variation between the counts derived using
flowJo and flowCore for each population:

> print (plotPopCV(G[[1]]))

1
B Cell |:|
mDC |:|
pDC |:|
APC II
CD14-MHC2- I:I
IFNa+ || | |
IL-6+ |
w12+ ||| |
TNFa+ |:|:|
Monocytes |]
Live |
a2004_01T2pb05i_Al_A01.fcs

T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Coefficient of Variation

We can plot individual gates: note the scale of the transformed axes.

> print (plotGate(G[[1]],getNodes(G[[1]]) [3],1wd=2))

260000 — -
140000 — -

70000 — -

36000 — -
19000 — -

9700 —

5000 —
2600 —

1400 —
710 H -

380

200 —
110
55
22
-2.9 -
-29 . vt L ‘
-56 . o -
-84 — ’ oL -
-110 —

<PE-CY7-A>

|||||||||||||||||'|||
-11684-56-292.22 55112003807 112+0P650097 A®860000ABE0000

<PerCP-CY5-5-A>

If we have metadata associated with the experiment, it can be attached
to the GatingSet.

\%

d<-data.frame (sample=factor(c("sample 1", "sample 2")),treatment=factor(c("sample",
GO@metadata<-new("AnnotatedDataFrame'",data=d)
pData(G) ;

vV Vv

sample treatment
sample 1 sample
sample 2 control

N =

We can retrieve the subset of data associated with a node:

v

getData(G[[1]],getNodes(G[[1]1]1) [3]1);

flowFrame object '1be493f5-51dd-4359-b2ed-524cd104ebbf"

with 4158 cells and 23

$P1
$P2
$P3
$P4
$P5
$P6
$p7
$P8
$P9
$P10
$P11
$P12
$P13
$P14
$P15
$P16
$P17
$P18
$P19
$P20
$pP21
$p22
$p23

name
FSC-A

FSC-H

FSC-W

SSC-A

SSC-H

SSC-W

<Am Cyan-A>

Am Cyan-H
<Pacific Blue-A>
Pacific Blue-H
<APC-A>

APC-H
<APC-CY7-A>
APC-CY7-H
<Alexa 700-A>
Alexa 700-H
<FITC-A>

FITC-H
<PerCP-CY5-5-A>
PerCP-CY5-5-H
<PE-CY7-A>
PE-CY7-H

Time

observables:

desc
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
CD123
CDh123
IL-12
IL-12
CDh11c
CDl1c
IL-6
IL-6
TNFa
TNFa
IFNa
IFNa
MHCII
MHCII
CD14
CDh14
<NA>

range

262254.
262143.
262143.
262254
262143.
262143.
3661.
262143.
3927.
262143.
4405.
262143.
3714.
262143.
3712.
262143.
4180.
262143.
4942.
262143.
4942.
262143.
9918.

000
000
000
000
000
000
959
000
974
000
818
000
446
000
753
000
519
000
398
000
398
000
400

minRange

-111.
.00000
.00000
.00000
.00000
.00000
.34379
.00000
.60860
.00000
.01302
.00000
.93207
.00000
.62271
.00000
.81306
.00000
-844.
.00000
-844.
0.
89.

00000

59317

59317
00000
00000

322 keywords are stored in the 'description' slot

Or we can retrieve the indices specifying if an event is included inside or

outside a gate using:

> getIndices(G[[1]],getNodes (G[[1]1]1) [3])

The indices returned are relative to the parent population (member of parent
AND member of current gate), so they reflect the true hierarchical gating

structure.

If we wish to do compensation or transformation manually, we can re-

trieve all the compensation matrices from the workspace:

> C<-getCompensationMatrices (ws);

> C

maxRange

262143.
262143.
262143.
262143.
262143.
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
4097 .
262143.
10007.

000
000
000
000
000
000
303
000
582
000
805
000
378
000
376
000
706
000
805
000
805
000
400

$~A2004-A2005_061"

Am Cyan-A Pacific Blue-A

APC-A APC-CY7-A Alexa

Am Cyan-A 1.00000 0.04800 0.000000
Pacific Blue-A 0.38600 1.00000 0.000529
APC-A 0.00642 0.00235 1.000000
APC-CYT7-A 0.03270 0.02460 0.084000
Alexa 700-A 0.07030 0.05800 0.016200
FITC-A 0.74500 0.02090 0.001870
PerCP-CY5-5-A 0.00368 0.00178 0.015300
PE-CY7-A 0.01330 0.00948 0.000951
FITC-A PerCP-CY5-5-A PE-CY7-A
Am Cyan-A 0.028500 0.00104 0.00000
Pacific Blue-A 0.000546 0.00000 0.00000
APC-A -0.000611 0.00776 0.00076
APC-CYT7-A 0.002690 0.00304 0.01010
Alexa 700-A 0.001530 0.10800 0.00679
FITC-A 1.000000 0.04180 0.00281
PerCP-CY5-5-A 0.000000 1.00000 0.07030
PE-CY7-A 0.002340 0.03360 1.00000

Or we can retrieve transformations:

> T<-getTransformations (ws)
> names (T)

[1] "InputParameterTransform_Gainl_QOffsetl"

[2] "A2004-A2005_06i"

[3] "InputParameterTransform_Gainl_0ffset1262144"

> names(T[[1]])

[1] "InputParameterTransform_Gainl_ Offsetil"

[2] "InputParameterTransform_Gainl_Offset1262144"

> T[[1]1[[1]]

function (x, deriv = 0)

{
deriv <- as.integer(deriv)
if (deriv < 0 || deriv > 3)

stop("'deriv' must be between O and 3")

10

0.
.0000
.0611
.0000
.3990
.0000
.0269
.1380

O O OO = OO

0000

O OO+ O O OO

700-A

.00000
.00000
.19800
.02870
.00000
.00000
.07690
.00182

if (deriv > 0) {
z0 <- double(z$n)
z[c("y", "b", "c")] <- switch(deriv, list(y = z$b, b = 2 *
z$c, ¢ = 3 * z$d), list(y = 2 * z$c, b = 6 * z$d,
c = 20), list(y = 6 * z8d, b = z0, ¢ = z0))
Z[["d"]] <- 20

res <- .C(C_spline_eval, z$method, as.integer(length(x)),
x = as.double(x), y = double(length(x)), z%n, zx, z$y,
zb, zc, z$d, PACKAGE = "stats")$y
if (deriv > 0 && z$method == 2 && any(ind <- x <= z$x[1L]))
res[ind] <- ifelse(deriv == 1, z$y[1L], 0)
res
}
<bytecode: 0x5b111a8>
<environment: 0x6d472278>

getTransformations returns a list, each element of which corresponds
to a transformation applied to a group of samples. The transformation is
presented as a list of functions to be applied to different dimensions of the
data. Above, the transformation is applied to all samples of the group and
for each sample in the group, the appropriate dimension is transformed using
a channel-specific function from the list.

The list of samples in a workspace can be accessed by:

> getSamples (ws) ;

sampleID name count compID pop.counts
1 1 a2004_01T2pb05i 61832 1 19
2 2 a2004_01T2pb05i 45363 1 19

And the groups can be accessed by:

> getSampleGroups (ws)
groupName groupID sampleID

1 All Samples 0 1

2 A1l Samples 0 2

The compID column tells you which compensation matrix to apply to a
group of files, and similarly, based on the name of the compensation matrix,
which transformations to apply.

11

4.4 Converting to flowCore Objects

You may want to convert the imported workspace into flowCore objects,

such as workflows. We provide this functionality via the flowWorkspace2flowCore

function.
flowWorkspace2flowCore extracts the compensation matrices,transformation

functions and all the gates from GatingHierarchies generated by flowWorkspace

package and converts them to the respective views and actionltems of work-

Flows defined by flowCore package. It takes a gatingHierarchy, flowJoWorkspace

or GatingSet as the input, and returns one or multiple workflows as the re-

sult, depending on whether the gating hierarchies for each sample (including

gate coordinates) are identical.

> wfs<-flowWorkspace2flowCore (G, path=ws@path) ;
> wfs

[[1]1]
A flow cytometry workflow called 'default'
The following data views are provided:

Basic view 'base view'
on a flowSet
not associated to a particular action item

View 'CompensationView'
on a flowSet linked to
compensation action item 'action_defaultCompensation'

View 'a2004_01T2pb05i'
on a flowSet linked to
transform action item 'action_defaultTransformation'

View '3.Live+'
on a flowSet linked to
gate action item 'action_3.Live'

View '4.APC+'
on a flowSet linked to

gate action item 'action_4.APC'

View '5.B Cell+!'

12

on a flowSet linked to
gate action item 'action_5.B Cell'

View '6.mDC+'
on a flowSet linked to
gate action item 'action_6.mDC'

View '7.IFNa++'
on a flowSet linked to
gate action item 'action_7.IFNa+'

View '8.IL-6++'
on a flowSet linked to
gate action item 'action_8.IL-6+'

View '9.IL-12++'
on a flowSet linked to
gate action item 'action_9.IL-12+'

View '10.TNFa++'
on a flowSet linked to
gate action item 'action_10.TNFa+'

View '11.pDC+'
on a flowSet linked to
gate action item 'action_11.pDC'

View '12.IFNa++'
on a flowSet linked to
gate action item 'action_12.IFNa+'

View '13.IL-6++'
on a flowSet linked to

gate action item 'action_13.IL-6+'

View '14.IL-12++"
on a flowSet linked to
gate action item 'action_14.IL-12+'

View '15.TNFa++'

13

on a flowSet linked to
gate action item 'action_15.TNFa+'

View '16.CD14-MHC2-+'
on a flowSet linked to
gate action item 'action_16.CD14-MHC2-'

View '17.Monocytes+!'
on a flowSet linked to
gate action item 'action_17.Monocytes'

View '18.IFNa++'
on a flowSet linked to
gate action item 'action_18.IFNa+'

View '19.IL-6++'
on a flowSet linked to
gate action item 'action_19.IL-6+'

View '20.IL-12++'
on a flowSet linked to
gate action item 'action_20.IL-12+'

View '21.TNFa++'

on a flowSet linked to
gate action item 'action_21.TNFa+'

plotWf plots the workflow tree

> plotWf (wfs[[11])

14

base view

a2004_01T2pb05i

Live+

AN

APC+ CD14-MHC2-+ Monocytes+

VAN

B Cell+ mDC+ pDC+ IFNa++ IL-6++ IL-12++ TNFa++

P ZZANNANN

IFNa++ IL-6++ IL-12++ TNFa++ IFNa++ IL-6++ IL-12++ TNFa++

Finally, when we are finished with the workspace, we close it:

> closelWorkspace (ws) ;
> ws

FlowJo Workspace Version 2.0

File location: /loc/home/biocbuild/bbs-2.9-bioc/R/library/flowWorkspaceData/extdata
File name: A2004Analysis.xml

Workspace is closed.

4.5 Exporting to FlowJo OSX 9.2

The exportAsFlowJoXML function can be used to export a flowCore: :workFlow
as an XML workspace for FlowJo 9.2 OSX. If lowWorkspace has been used

to import an existing FlowJo workspace, flowWorkspace2flowCore can be
used to obtain a workFlow for exporting. Currently this function can export
one workFlow at a time.

15

4.6 Additional Important Notes
4.6.1 NetCDF Support

If you have particularly large data files (millions of events), then you will
want to make use of the netCDF framework. To do so, you will have to
install the netcdf4 C library (available at http://www.unidata.ucar.edu/
downloads/netcdf/index. jsp), and build it with HDF5 support.You will
also need the R library ncdf4. To use NetCDF, pass isNcdf=TRUE to parse-
Workspace. flowWorkspace will create one netedf file for the processed data,
and additional netcdf files (one per sample) containing the event member-
ships for each gate in each sample. To build flowWorkspace to use netedf,
you may need to run autoconf in the top—level directory of the untarred
flowWorkspace source directory, before installing with R CMD INSTALL.

4.6.2 Known Bugs

Importing flowJo transformations. We have made every effort to support
the importing of flowJo’s data transformations. Sometimes, however, flow-
Workspace may have difficulty identifying the correct transofrmation to ap-
ply to your data. There are several things you can do:

e Visualize your data after import using plotPopCV(). This will tell you
if there is a discrepancy between the flowJo counts and the flowCore
counts for individual populations. Keep in mind that tare populations
can differ by a few cells and still show large coefficients of variation.

e If you are having difficulty importing your data due to a transfor-
mation problem, ensure that you are using either a log transform, or
flowJo’s “custom biexponential transform”. The latter provides an ex-
plicit mapping between transformations, compensation matrices, and
flow parameters. Outside of these two cases, success or failure appears
to be dependent on the version of flowJo that was used to create the
original workspace.

5 Troubleshooting

If this package is throwing errors when parsing your workspace, and you are
certain your workspace is version 2.0, contact the package author. If you
can send your workspace by email, we can test, debug, and fix the package
so that it works for you. Our goal is to provide a tool that works, and that
people find useful.

16

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.unidata.ucar.edu/downloads/netcdf/index.jsp

6 Future Improvements

We are working on support for flowJo XML workspaces exported from the
Windows version of flowJo. Efforts are underway to integrate GatingSet and
GatingHierarchy objects more closely with the rest of the flow infrastructure.

17

	Purpose
	Why Another flowJo Workspace Import Package?
	Support
	Data Structures
	Loading the library
	Opening a Workspace
	Parsing the Workspace
	Converting to flowCore Objects
	Exporting to FlowJo OSX 9.2
	Additional Important Notes
	NetCDF Support
	Known Bugs

	Troubleshooting
	Future Improvements

