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Abstract

exomeCopy is an R package implementing a hidden Markov model1 for predicting copy
number variants (CNVs) from exome/targeted sequencing experiments without paired con-
trol experiments as in tumor/normal sequencing.2 It models read counts in genomic ranges
using negative binomial emission distributions depending on a hidden state of the copy num-
ber and on positional covariates such as GC-content and background read depth. Normaliza-
tion and segmentation are performed simultaneously, eliminating the need for preprocessing
of the raw read counts.
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1 Introduction

The exomeCopy package was designed to address the following situation:

1The manuscript describing the model [Love et al., 2011] is listed in the references of this vignette.
2R packages which can be used for CNV detection in whole genome or tumor/normal paired exome sequencing

data are ReadDepth and ExomeCNV respectively, available on CRAN.
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• Target enrichment, such as exome enrichment, leads to non-uniform read depth, which is
often correlated across samples.

• CNVs overlapping enriched regions can be detected as increases or decreases in read counts
relative to “background” read depth, generated by averaging over a control set.

• Individual samples can be more or less correlated with background read depth and have
different dependencies on GC-content.

While exome sequencing is not designed for CNV genotyping, it can nevertheless be used for
finding CNVs which overlap exons and are not common in the control set. It can provide an
independent data source to be used in combination with higher resolution array-based methods.
In this vignette we show how to prepare data, generate background read depth, simulate CNVs
in read count data and recover CNVs using exomeCopy . We build a wrapper function for calling
the exomeCopy function over multiple chromosomes and samples such that the operations can be
assigned across workstations.

2 Importing experiment data

The necessary genomic range information, read counts and positional covariates (background
read depth and GC-content) should be stored in a RangedData object. The user must provide
genomic ranges of targeted enrichment. For exome sequencing, one can use exon annotations,
which will be discussed in a later section. The exomeCopy package provides two convenience
functions for preparing the genomic ranges and sample read counts: subdivideGRanges and
countBamInGRanges. In this vignette we will use a prepackaged RangedData object containing
real exome sequencing read counts. Due to memory constraints, we cannot construct this object
from scratch, but below we demonstrate with a simple example how to construct a RangedData
object from a BED file describing the targeted region, BAM files for the read mapping and a
FASTA file for the reference sequence.

2.1 Subdividing targeted regions

subdivideGRanges divides the targeted genomic ranges into a set of ranges of nearly equal width,
which exactly cover the original ranges. While exomeCopy can use range width as a covariate
for modeling read counts, we find it useful to break apart the largest input ranges into multiple
ranges of comparable width to the average input range. subdivideGRanges requires an input
GRanges object and returns a GRanges object.

> library(exomeCopy)

> gr <- GRanges(seqname="seq1",IRanges(start=1,end=345))

> subdivideGRanges(gr)

GRanges with 3 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [ 1, 115] *

[2] seq1 [116, 230] *

[3] seq1 [231, 345] *

---

seqlengths:
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seq1

NA

The default setting of subdivideGRanges is to divide an input range into ranges around
s = 100bp, which is slightly less than the average exon width. Specifically, an input range
of width w will be divided evenly into max(1, bw/sc) regions. We can visualize the effect of
subdivideGRanges on ranges of increasing width.

> plot(0,0,xlim=c(0,500),ylim=c(0,25),type="n",yaxt="n",ylab="",

+ xlab="width of input GRanges object",

+ main="Effect of subdivideGRanges")

> abline(v=1:5*100,col="grey")

> for (i in 1:24) {

+ gr <- GRanges(seqname="chr1",IRanges(start=1,width=(i*20)))

+ sbd.gr <- subdivideGRanges(gr)

+ arrows(start(sbd.gr),rep(i,length(sbd.gr)),end(sbd.gr),

+ rep(i,length(sbd.gr)),length=.04,angle=90,code=3)

+ }

0 100 200 300 400 500

Effect of subdivideGRanges

width of input GRanges object

Here we demonstrate reading in a targeted region BED file, converting to a GRanges object
and the result from calling subdivideGRanges. Note that if the targeted region is read in from
a BED file, one should add 1 to the starting position for representation as a GRanges object.

> target.file <- system.file("extdata","targets.bed",package="exomeCopy")

> target.df <- read.delim(target.file,header=FALSE,

+ col.names=c("seqname","start","end"))

> target <- GRanges(seqname=target.df$seqname,

+ IRanges(start=target.df$start+1,end=target.df$end))

> target
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GRanges with 5 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [101, 250] *

[2] seq1 [301, 650] *

[3] seq2 [ 1, 150] *

[4] seq2 [401, 550] *

[5] seq2 [701, 750] *

---

seqlengths:

seq1 seq2

NA NA

> target.sub <- subdivideGRanges(target)

> target.sub

GRanges with 7 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] seq1 [101, 250] *

[2] seq1 [301, 417] *

[3] seq1 [418, 533] *

[4] seq1 [534, 650] *

[5] seq2 [ 1, 150] *

[6] seq2 [401, 550] *

[7] seq2 [701, 750] *

---

seqlengths:

seq1 seq2

NA NA

2.2 Counting reads in genomic ranges

countBamInGRanges allows the user to count reads from a BAM read mapping file in genomic
ranges covering the targeted region. The function takes as input the BAM filename and a
GRanges object. It returns a vector of counts, representing the number of sequenced read starts
(leftmost position regardless of strand) with mapping quality above a minimum threshold (default
of 1) for each genomic range. Users should make sure the sequence names in the GRanges object
are the same as the sequence names in the BAM file (which can be listed using scanBamHeader

in the Rsamtools package). The BAM file requires a associated index file (see the man page for
indexBam in the Rsamtools package). We will count reads using the subdivided genomic ranges
in target.sub and store the counts as a new value column, sample1.

> bam.file <- system.file("extdata","mapping.bam",package="exomeCopy")

> scanBamHeader(bam.file)[[1]]$targets

seq1 seq2

800 800

> levels(seqnames(target.sub))

4



[1] "seq1" "seq2"

> rdata <- RangedData(space=seqnames(target.sub),ranges=ranges(target.sub))

> rdata[["sample1"]] <- countBamInGRanges(bam.file,target.sub)

> rdata

RangedData with 7 rows and 1 value column across 2 spaces

space ranges | sample1

<factor> <IRanges> | <numeric>

1 seq1 [101, 250] | 73

2 seq1 [301, 417] | 59

3 seq1 [418, 533] | 61

4 seq1 [534, 650] | 54

5 seq2 [ 1, 150] | 80

6 seq2 [401, 550] | 69

7 seq2 [701, 750] | 31

2.3 Calculating GC-content

exomeCopy can model read counts from samples which are not perfectly correlated with back-
ground read depth using GC-content (ratio of G and C bases to total number of bases). The
GC-content of DNA fragments is known to be a factor in the efficiency of high-throughput se-
quencing. Using scanFa in the Rsamtools package and a FASTA file of the reference genome,
we can obtain a DNAStringSet object for the DNA sequence of the genomic ranges. Then
letterFrequency in the Biostrings package can be used to tally the GC-content.

> reference.file <- system.file("extdata","reference.fa",package="exomeCopy")

> target.dnastringset <- scanFa(reference.file,target.sub)

> getGCcontent <- function(x) {

+ GC.count <- letterFrequency(x,"GC")

+ all.count <- letterFrequency(x,"ATGC")

+ as.vector(ifelse(all.count==0,NA,GC.count/all.count))

+ }

> rdata[["GC"]] <- getGCcontent(target.dnastringset)

> rdata

RangedData with 7 rows and 2 value columns across 2 spaces

space ranges | sample1 GC

<factor> <IRanges> | <numeric> <numeric>

1 seq1 [101, 250] | 73 0.4533333

2 seq1 [301, 417] | 59 0.4273504

3 seq1 [418, 533] | 61 0.5689655

4 seq1 [534, 650] | 54 0.5213675

5 seq2 [ 1, 150] | 80 0.5733333

6 seq2 [401, 550] | 69 0.4800000

7 seq2 [701, 750] | 31 0.3600000

In the following sections, we will continue with a dataset constructed using real targeted
regions and exome sequencing data.
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3 Exome sequencing data from 1000 Genomes Project

For demonstrating the use of exomeCopy , we have provided a sample dataset, exomecounts,
of exome sequencing read counts. The genomic ranges used in this dataset are generated from
a small subset of the CCDS regions on chromosome 1 [Pruitt et al., 2009]. The regions are
downloaded from the hg19 tables of the UCSC Genome Browser (http://genome.ucsc.edu/
cgi-bin/hgGateway). Alternatively, one could use the GenomicFeatures package to download
the CCDS regions. The original CCDS regions are subdivided using subdivideGRanges with
default settings as in the example code above. The CCDS regions are convenient to use as
genomic ranges for CNV detection in exome sequencing data, as they are often in the center of
the targeted region in exome enrichment protocols and tend to have less variable coverage than
the flanking regions.

The read counts are taken from exome enriched, paired-end sequencing data of the 1000
Genomes Project for 16 samples of the PUR population [1000 Genomes Project Consortium,
2010]. The BAM read mapping files and descriptions of the experiments are available at the
1000 Genomes Project website (http://www.1000genomes.org/data). The ftp addresses used
are listed in the file 1000Genomes_files.txt in the extdata directory. The sample names are
included as column names in the provided datatset.

> data(exomecounts)

> dim(exomecounts)

[1] 1000 17

> exomecounts[1:5,1:3]

RangedData with 5 rows and 3 value columns across 1 space

space ranges | GC HG00551 HG00641

<factor> <IRanges> | <numeric> <numeric> <numeric>

1 chr1 [861322, 861393] | 0.6389 139 223

2 chr1 [865535, 865716] | 0.6484 45 90

3 chr1 [866419, 866469] | 0.5882 77 123

4 chr1 [871152, 871276] | 0.6480 254 285

5 chr1 [874420, 874509] | 0.6111 24 40

The genomic ranges in exomecounts have been filtered such that only ranges with nonzero
read count over the 16 samples are retained. The range of the 1000 genomic ranges is from 0.8
to 7.8 Mb on chromosome 1. Plotting the counts for one sample in a region of 1 Mb, one can
observe both the irregular spacing of the ranges as well as the non-uniformities in read counts
per range.

> plot(start(exomecounts),exomecounts$HG00551,xlim=c(0.8e6,1.8e6),

+ xlab="genomic position",ylab="counts",

+ main="HG00551 read counts in exonic ranges")
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3.1 Generating background read depth

In order to run exomeCopy , we first generate background read depth. We extract a read counts
data frame from the RangedData object and divide each sample by its mean read count (column
mean). Our read depth background is the median of these normalized read counts over the
16 samples (row median). We could at this point also store the standard deviation of the
normalized read counts for a measure of read depth deviation at each range, but we will not use
this information in this vignette.

> exome.samples <- grep("HG.+",colnames(exomecounts),value=TRUE)

> sample.columns <- colnames(exomecounts) %in% exome.samples

> C <- as.data.frame(unlist(values(exomecounts)[,sample.columns]))

> C.norm <- sweep(C,2,colMeans(C),"/")

> exomecounts[["bg"]] <- apply(C.norm,1,median)

The relationship between read counts and GC-content over the ranges varies across protocols
and samples. It can be roughly approximated per sample using second-order polynomial terms
of GC-content. We store the square of GC-content as a new value column. Other functions of
GC-content could be used as well. We also store the width of the ranges as a value column.

> exomecounts[["GC.sq"]] <- exomecounts$GC^2

> exomecounts[["width"]] <- width(exomecounts)

4 Brief introduction of the model

exomeCopy models the sample read counts on one chromosome, O, as emitted observations of a
hidden Markov model (HMM), where the hidden state is the copy number of the sample. The
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emission distributions f are modeled with negative binomial distributions, as the read counts
from high-throughput sequencing are often overdispersed for the Poisson distribution.

f ∼ NB(Ot, µti, φ)

µti =
Si

d
(xt∗β)

The mean parameter, µti, for genomic range t and hidden state i is a product of the possible
copy number state Si over the expected copy number d and an estimate of the positional effects
on read depth (xt∗β), where xt∗ is the t-th row of X and β is a column vector of coefficients. The
estimated positional effect is a linear combination of background read depth, GC-content, range
width, and any other useful covariates which are stored in the matrix X, with a row for each
range and a column for each covariate. The coefficients β are fit by the model, using the forward
equations to assess the likelihood of the HMM over all hidden state paths. In this way, the
normalization and segmentation steps are combined into one step of maximizing the likelihood of
the parameters given the data. The Viterbi algorithm is then applied to provide the most likely
path.

Table 1: Summary of notation
Ot observed count of reads in the t-th genomic range
f the emission distribution for read counts
µti the mean parameter for f at range t in copy state i
φ the dispersion parameter for f
Si the copy number for state i (Si ∈ {0, 1, 2, . . .})
d the expected background copy number (2 for diploid, 1 for haploid)
X the matrix of covariates for estimating µ
Y the matrix of covariates for estimating φ
β the fitted coefficients for estimating µ
γ the fitted coefficients for estimating φ

The base model uses a scalar estimate for the dispersion parameter φ (equivalent to 1/size in
the function dnbinom). An extension of this model also tries to fit the variance using positional
information such as the standard deviation of the background read depth stored in a matrix Y .

f ∼ NB(Ot, µti, φt)

φt = yt∗γ

Both µti and φt must be positive, so negative estimates are replaced with a small positive
number (1e-8).

5 Running exomeCopy on simulated CNVs

Next we simulate CNVs in 4 samples representing regions with a copy number of 0,1,3 and 4,
relative to a background copy number of 2. This is accomplished by selecting a fraction of the
reads contained in the CNV bounds and removing or doubling them. The new counts with
simulated CNVs are added as new value columns to the RangedData object. We then plot the
original counts and the counts within a simulated heterozygous duplication.
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> set.seed(2)

> cnv.type <- c("hom.del","het.del","het.dup","hom.dup")

> cnv.probs <- c(.99,.5,.5,.95)

> cnv.mult <- c(-1,-1,1,1)

> bounds <- IRanges(start=3e6,end=4e6)

> for (i in 1:4) {

+ samplename <- exome.samples[i]

+ contained <- unlist(ranges(exomecounts)) %in% bounds

+ O <- exomecounts[[samplename]]

+ O[contained] <- O[contained] + (cnv.mult[i] *

+ rbinom(sum(contained),prob=cnv.probs[i],size=O[contained]))

+ exomecounts[[paste(samplename,cnv.type[i],sep=".")]] <- O

+ }

> par(mfrow=c(2,1),mar=c(5,4,3,2))

> plot(start(exomecounts),exomecounts[["HG00731"]],

+ xlab="genomic position",ylab="counts",main="Original counts")

> abline(v=c(start(bounds),end(bounds)))

> plot(start(exomecounts),exomecounts[["HG00731.het.dup"]],

+ xlab="genomic position",ylab="counts",

+ main="Simulated heterozygous duplication")

> abline(v=c(start(bounds),end(bounds)))
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5.1 Running exomeCopy and inspecting the segmentation

We can now run exomeCopy using the read counts for one of the simulated CNV samples. Later
we will show how to write a simple wrapper function to loop the exomeCopy function over multiple
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chromosomes and samples. We specify the possible copy number values with S and the expected
copy number state with d.

> fit <- exomeCopy(exomecounts["chr1"],sample.name="HG00731.het.dup",

+ X.names=c("bg","GC","GC.sq","width"),S=0:6,d=2)

> show(fit)

ExomeCopy object

type: exomeCopy

percent normal state: 83.5%

After fitting, we call the function copyCountSegments on the ExomeCopy object, which
provides the segmentation with the predicted copy number and the number of input genomic
ranges contained within each segment. exomeCopy correctly identifies the segment between 3-4
Mb as having copy number 3 against the background copy number 2.

> copyCountSegments(fit)

RangedData with 3 rows and 2 value columns across 1 space

space ranges | copy.count nranges

<factor> <IRanges> | <integer> <numeric>

1 chr1 [ 861322, 2939384] | 2 503

2 chr1 [3102689, 3809560] | 3 165

3 chr1 [4715486, 7838229] | 2 332

Calling plot on the ExomeCopy object draws segments of constant predicted copy number
as colored horizontal lines and normalized read counts as points. The vertical lines indicate the
start and end of the simulated CNV of copy number 3.

> cols <- c("red","orange","black","deepskyblue","blue","blue2","blue4")

> plot(fit,col=cols)

> abline(v=c(start(bounds),end(bounds)))
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5.2 Looping exomeCopy over multiple chromosomes/samples

In order to apply exomeCopy to a full dataset of multiple chromosomes and samples, we write
a wrapper function runExomeCopy. This allows for distribution of jobs across workstations, for
example.

> runExomeCopy <- function(idx,rdata,seq.loop,sample.loop) {

+ seq.name <- seq.loop[idx]

+ sample.name <- sample.loop[idx]

+ exomeCopy(rdata[seq.name],sample.name,

+ X.names=c("bg","GC","GC.sq","width"),S=0:6,d=2)

+ }

We can now run exomeCopy using either lapply or using a function like clusterApplyLB

from the snow package. We define an order of chromosome-sample pairs by constructing variables
seq.loop and sample.loop with the rep function. By progressing through these two vectors,
we predict CNVs in all chromosomes for all samples. We apply runExomeCopy over the 4 samples
with simulated CNVs and across 1 chromosome, though this code could be used across multiple
chromosomes as well.

> seqs <- c("chr1")

> samples <- paste(exome.samples[1:4],cnv.type,sep=".")

> nseqs <- length(seqs)

> nsamples <- length(samples)

> seq.loop <- rep(seqs,times=nsamples)

> sample.loop <- rep(samples,each=nseqs)

> fit.list <- lapply(seq_len(nseqs*nsamples),

+ runExomeCopy,exomecounts,seq.loop,sample.loop)

We can visualize the segments of constant predicted copy number for all simulated CNV
samples. The vertical lines indicate the start and end of the simulated CNVs.

> par(mfrow=c(4,1),mar=c(3,3,1,1))

> for (i in 1:4) {

+ plot(fit.list[[i]],main="",xlab="",ylab="",show.legend=FALSE,col=cols)

+ abline(v=c(start(bounds),end(bounds)))

+ }

11



1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

0
1

2
3

4

●

●

●
●

●●
●

●●

●●●●

●●

●●
●

●

●
●
●
●●●●
●●
●
●●●
●

●
●

●●
●

●●

●
●
●

●

●
●●
●

●
●
●

●
●

●
●
●●●●

●

●

●

●

●
●

●●●●
●●

●
●●
●
●
●●
●●●
●
●
●
●●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●

●

●●

●●

●
●
●●
●
●●
●
●●●

●
●●●●

●●●●●●
●

●
●
●

●

●

●

●●

●●●
●
●
●
●
●

●
●
●

●
●
●●
●●●

●●

●
●
●

●●●

●

●

●
●●●
●●

●

●●
●

●

●●

●
●

●
●

●●●
●

●
●●●
●
●

●

●

●

●
●●●
●

●

●

●●●

●
●
●
●●●●
●

●
●●
●

●

●
●●

●●
●

●●

●
●
●

●

●
●
●
●

●
●
●
●
●●●●

●

●

●

●●
●

●●

●

●●

●

●●
●
●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●●
●
●●
●●●●

●

●
●

●●

●

●
●
●

●

●

●●●

●
●

●

●

●

●
●

●●

●

●
●●
●

●

●

●
●●
●●
●
●

●

●

●
●

●

●●

●
●

●

●●●●●●

●
●
●●●●●
●

●●●
●●●●
●●

●●
●
●
●

●

●●

●
●●● ●

●
●
●

●

●

●

●

●●

●
●

●
●
●

●

●●

●
●
●●
●●
●●

●

●

●
●
●
●●
●
●●
●●
●

●●●●●

●

●

●●
●

●
●
●
●●●
●
●
●●

●
●●
●

●●●●●
●

● ●●

●●

●
●

●

●●
●

●●●

●

●●●●●

●
●●●
●

●●
●

●

●
●●●
●●●

●

●●
●

●

●
●●
●●●●●
●
●
●

●

●

●●

●

●●●
●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●
●
●

●●
●●

●●●

●
●

●●●●●
●
●

●

●●

●

●●
●
●●

●
●●
●●
●

●

●●●●

●
●
●
●●●

●

●

●

●

●

●
●
●
●

●
●●

●
●

●

●●●●

●
●●●●
●●●
●●●●

●
●
●
●●
●●

●

●
●●●●

●

●
●

●

●●
●
●
●
●
●
●
●●

●

●
●

●

●

●●●●●
●

●●
●
●

●

●
●●●
●
●

●
●

●

●●
●

●●●●●
●

●
●

●

●

●

●

●
●
●

●

●●
●●●
●
●●
●

●
●

●●
●●
●●
●

●●
●
●
●●

●
●

●

●

●●
●●
●
●

●
●
●●
●●●●●●●
●●

●
●
●
●

●

●
●●
●●●
●
●
●
●●●●
●●●
●●
●●
●●●●●
●
●

●●

●

●●●●
●
●
●
●●
●
●
●

●

●●
●
●

●

●●

●
●
●●
●
●

●
●
●

●
●

●
●

●

●●
●
●

●
●●
●

●
●
●
●
●

●

●● ●

●
● ●●●●●

●
●
●
●●
●●●
●
●●
●●
●
●
●
●●●

●

●●●●●●●●●●
●
●●
●
●

●

●
●●

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

0
1

2
3

4

●●●

●

●
●●

●
●

●
●●●●

●

●
●●
●●
●

●
●

●●
●
●
●
●

●
●
●

●
●
●●
●
●●
●●●
●
●●
●●●●

●

●

●

●

●

●
●
●●
●
●
●

●
●●●
●
●●●
●
●

●●●●
●

●

●
●

●

●●
●
●
●

●●

●

●
●
●

●

●

●
●
●

●

●

●●
●
●

●

●
●
●●●
●

●
●

●●

●

●

●●
●
●
●●

●
●●
●

●

●

●

●

●●●
●
●
●
●
●●●

●●

●

●

●●●
●

●●●●●

●
●

●

●

●

●
●
●
●
●
●●●

●
●●

●

●

●

●
●●
●
●
●

●

●●
●
●
●●●

●●

●
●

●

●
●●
●
●●
●

●●

●

●●
●●
●

●
●●
●
●

●
●●
●●
●
●
●
●
●●●
●
●●
●●●●●●
●●

●
●●

●

●
●
●●●
●

●

●

●●●●●

●

●●●●●
●
●

●

●

●●●●

●●
●
●
●
●

●●●●
●

●●

●

●

●●●●●
●

●
●●
●●

●
●
●

●

●

●●
●

●

●

●
●
●

●
●

●
●●
●
●

●●

●

●
●●
●●●
●
●●●●
●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●
●●●

●●

●
●●●
●

●
●
●●●●

●

●

●

●●
●

●●

●●

●

●
●●
●
●

●
●●

●

●
●

●
●●●
●

●●
●

●●
●

●

●

●●

●●
●●

●
●●●●
●
●
●●

●

●
●

●●●●
●
●

●

●●●
●
●
●

●
●
●●●

●●
●●

●●
●

●
●
●
●
●
●
●
●
●●
●
●●●●●
●
●●

●
●
●

●
●
●●
●

●

●
●
●
●
●
●●
●
●●●●

●●

●

●●
●
●●●

●
●
●●●●●

●●●
●

●●
●●
●●●●
●●●●●●●●
●
●
●
●
●●●
●●●●●●●
●
●●●
●
●

●

●●

●
●●
●●

●

●

●●

●
●●●

●●

●

●●●

●●
●
●
●
●

●●●
●

●●●●
●
●
●●●
●
●●
●
●●

●
●
●●●●
●

●

●●

●

●●●●
●
●●●
●●●
●
●●●●
●●
●

●●●●●●●●

●●
●●●●●●
●●
●●●●●
●●
●●●
●●●
●●●
●
●●●
●
●●●
●
●
●●●
●

●

●●

●

●●●

●
●●

●
●

● ●●
●●

●

●●
●

●

●

●

●
●

●
●

●
●
●
●
●
●

●
●
●●
●
●●
●
●●

●

●●●

●
●

●

●●
●

●
●

●●●

●

●
●
●●
●
●
●●

●●
●

●

●●
●

●

●
●
●
●

●
●●●
●●●●
●●

●

●●
●

●
●
●

●
●●
●
●
●

●

●
●●
●
●

●●

●

●●●

●

●●
●
●●
●●
●
●

●●●

●

●

●
●

●●

●

●●●
●

●

●

●

●●●
●●

●

●
●
●

●

●
●
●●

●

●
●●●

●

●●

●

●

●●●
●

●

●
●●
●
●●

●

●
●●●●●

●
●●●
●
●

●

●
●
●●●●
●
●
●●

●
●●●

●

●●
●●●●●●●●
●
●●●
●
●
●●
●●

●●
●●
●
●●●●●
●
●
●●
●●●
●
●●

●
●
●
●●

●●

●●●
●
●●●
●●
●

●

●
●

●
●
●
●
●
●●

●●
●

●

●●

●●

●● ●● ● ●
●

●

●
●●●
●●●
●
●
●

●
●●
●●
●
●●
●
●
●

●●
●
●●
●●
●
●●●
●
●
●

●

●●
●
●●
●
●

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

0
1

2
3

4
5

●

●

●
●
●

●

●

●●

●●
●●
●●

●●
●

●

●●●●
●●
●●
●
●
●●●

●

●
●●●●
●

●
●●
●
●
●●●●●
●

●
●

●

●

●
●●
●●

●

●●
●●
●●
●●●

●
●●●●
●
●
●
●

●

●
●

●●●
●●●
●
●
●●
●
●

●

●●

●

●●
●
●

●

●
●
●●

●

●
●

●
●
●
●
●
●
●
●
●
●●

●

●●
●●

●

●
●

●
●●●●
●●
●
●●

●

●

●

●

●

●

●

●●●●●●
●
●●
●
●
●

●●
●
●
●
●●
●
●
●
●
●●

●●

●●
●
●
●

●

●
●

●

●

●

●
●
●●

●

●
●
●
●
●

●
●
●
●●●●●●●
●
●
●
●
●
●●●

●

●
●
●
●
●

●●

●
●

●●●●●

●
●
●●●●●

●

●
●
●
●
●

●

●
●●●
●
●

●
●
●●●

●

●●
●
●
●

●

●

●●
●●

●
●
●●

●
●

●
●●
●
●●
●
●
●
●
●
●●

●

●

●●●
●

●

●

●

●●
●●●●
●
●

●●●
●●
●
●●

●

●●●
●
●
●
●●

●

●●
●●

●

●●
●
●
●●
●

●

●
●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●

●

●●
●● ●●

●
●

●●● ●●
●●
●●●
●●

●

●
●
●

●
●

●

●

●●●
●

●●●
●
●●

●
●●●
●●●
●
●

●
●

●

●●●●
●

●●
●
●●●
●

●

●
●
●
●
●●●
●
●●
●
●
●●
●
●●
●

●●

●●

●
●

●
●●●●●●●●
●●
●
●
●

●●

●●●●●●●●
●●

●

●
●

●
●●
●
●

●●
●

●●●●
●●●
●●

●●●
●
●●●
●●
●●

●

●
●

● ●●●●●●●
●

●
●
●●
●●●●●
●

●

●
●
●●

●●
●
●
●
●
●●
●●
●●
●

●

●●●

●

●
●

●
●
●

●●●
●

●

●●

●

●
●

●

●●●
●●
●

●●
●●

●

●
●
●
●
●●●

●
●

●

●●

●

●
●

●

●

●
●
●
●●
●
●
●
●●

●
●●

●
●●
●●●

●

●

●

●

●●

●●●●

●

●●
●
●

●●

●
●
●

●

●
●
●
●●●
●●

●

●

●●
●
●●●●●●●●

●

●
●

●●
●
●
●

●●
●
●

●
●●

●

●
●●
●

●

●
●
●●●

●●
●●●
●

●●

●
●
●
●
●
●●●
●
●
●●●
●●●●●
●●
●●
●●●

●
●●●
●
●●●

●

●
●
●

●●●
●

●
●●
●●●
●

●

●
●
●
●●●
●●●●
●

●
●●●●
●●●●●●
●
●
●
●

●

●
●●

●
●●
●●
●
●●●
●
●

●
●

●
●
●●●●
●

●●
●●●
●●●●●

●

●●●
●
●●●●●●

●

●

●●●●●●●
●
●
●●

●

●
●●●●
●●

●
●
●●●

●

●
●●●
●●
●
●
●●●

●

●

●●

●
●●●●
●●●●●●

●
●
●

●
●●
●●
●

●●●

●

●●●●●●●●●
●
●
●
●
●●
●

●●
●●●●●●
●
●
●●●●●●●
●

●●
●
●●●●
●
●

●
●●●

●

●
●

●●●
●●
●
●
●
●●
●●●
●●

●

●
●●●●●●●
●●

●
● ●●

● ● ● ●
●●
●●●●●
●
●●
●●●

●●

●●
●●●●●

●

●

●●
●

●
●●●●●●●●●
●●

●

●

●
●

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

0
1

2
3

4
5

6

●
●●
●
●●●

●

●●●●
●●
●●●
●●●●●●●
●
●●●
●

●

●●●

●
●●●●
●
●●
●●●
●
●●
●●
●

●●

●

●●
●

●
●●
●●●●
●●●●●●
●

●

●
●
●
●
●●●
●●●●
●●●●●●●

●●
●●●●
●
●●●
●
●

●

●
●
●●
●
●

●

●
●

●

●●
●
●●
●

●

●

●●

●

●●
●

●●
●●
●●
●●●●●
●●
●●●

●●●●●●●●●●●●●●
●
●
●
●●●●
●
●
●

●

●
●●
●●●
●●
●
●
●●●
●
●●●●
●
●
●
●
●●●
●

●

●
●
●
●●
●●
●

●
●
●●●●
●●
●●●●

●
●●

●●
●●●
●
●
●●●
●
●
●●●
●
●
●●●●
●
●
●●
●●
●
●
●
●
●
●
●
●

●
●●
●
●
●●
●
●
●●●●
●
●
●●
●●●●●●
●
●●
●
●●●
●
●●
●●
●

●

●

●●●●●●

●●

●
●●
●●●●

●
●

●
●

●

●
●●●●

●

●

●

●
●
●

●
●
●●●●●●●●

●

●
●

●

●●●
●●●●

●
●●
●
●●●●●●●●●●●●●

●

●●●
●●●●●●●

●
●●●●

●

●●●●●
●
●
●

●●
●●●
●
●●●
●●

●
●

●

●●●●
●●
●

●

●
●
●

●●●●●●
●●●●
●
●

●
●●●
●
●●●●
●●●
●

●
●●
●●
● ●

●

●

●

●
●
●●●●●●●
●
●●●
●●
●
●
●●
●
●
●
●
●
●
●●●
●●
●
●●
●●
●
●●●●●●●
●

●
●●●

●
●●●●
●●●●●●

●
●●

●
●●●

●●

●
●
●
●
●
●
●
●
●

●●
●

●

●

●

●

●●
●●
●
●
●●●
●●
●●
●●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●●
●
●

●

●

●

●
●
●●
●
●
●

●●

●●

●

●●●●
●
●
●

●

●●
●

●

●●
●
●●
●
●
●
●

●

●●●●●●●
●
●

●

●
●●
●
●

●●

●

●●
●

●●

●●●
●●
●
●

●●

●
●

●
●
●
●
●●●
●
●
●
●
●

●
●
●

●
●●

●

●●

●

●
●●●

●

●

●
●

●

●

●●●●

●
●
●

●
●●●●●●●

●
●

●●
●
●

●

●●
●●●
●
●●
●●
●

●●●●
●●●●
●●
●

●
●
●●●

●●●●●
●●●
●

●

●
●
●●●
●●
●●
●

●

●
●●●●

●

●●●●
●
●●●●
●
●
●●●●
●
●
●
●●●
●●●●●
●
●
●●●
●
●

●

●●
●●●

●●
●●
●●●●●
●
●●●
●

●●●
●
●
●●●
●
●
●
●
●
●
●●●

●
●●●

●

●

●

●●
●●
●

●
●●

●●●
●
●●

●
●
●
●●●●
●
●●●●
●●●
●

●●

●

●
●●
●
●
●
●
●●●●●●●●●●●●●●

●

●

●●●●●
●●
●
●
●
●
●●
●

●●●●●●●●●●●●●●●
●●●●●
●●
●●
●●●●
●
●●●●●●●●●●
●●
●
●●●●●
●
●
●
●

●
●●●●●
●

●●●●●

●

●
● ●

●
●

●
●
●
●●●●
●●●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●
●
●
●
●●●

5.3 Inspecting model parameters

Finally, we can inspect a number of fitted parameters in the ExomeCopy object, such as the β
vector which is adjusted in optimizing the likelihood of the HMM. The β vector is initialized
using a linear regression of counts on the covariates, and this and other initial parameter values
can be accessed in the init.par slot of the ExomeCopy object. These coefficients are adjusted
while optimizing the likelihood of the HMM. The final β vector and other final parameter values
are accessible in the final.par slot.

> fit.list[[1]]@init.par$beta.hat

intercept bg GC GC.sq width

141.820000 137.231101 91.349321 -77.486210 -7.434786

> fit.list[[1]]@final.par$beta

intercept bg GC GC.sq width

179.323912 170.942296 32.850119 -28.145603 -1.168821

If we plot the initial and final β vectors from the 4 samples with simulated CNVs, we can
observe that the β vector varies across patients and that the coefficients which maximize the full
HMM are not the same as the initial estimates from regression.

> par(mfrow=c(2,2),mar=c(3,5,1,1))

> for (i in 1:4) {

+ barplot(rbind(fit.list[[i]]@final.par$beta,fit.list[[i]]@init.par$beta.hat),

+ horiz=TRUE,las=1,beside=TRUE,col=c("white","darkgrey"),

+ xlim=c(-150,350))

+ legend("topright",legend=c("initial","final"),fill=c("darkgrey","white"))

+ }
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6 Session info

> sessionInfo()

R version 2.14.2 (2012-02-29)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] exomeCopy_1.0.3 Rsamtools_1.6.3 Biostrings_2.22.0

[4] GenomicRanges_1.6.7 IRanges_1.12.6

loaded via a namespace (and not attached):

[1] BSgenome_1.22.0 RCurl_1.91-1 XML_3.9-4 bitops_1.0-4.1

[5] rtracklayer_1.14.4 tools_2.14.2 zlibbioc_1.0.1
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