cummeRbund: Visualization and Exploration of

Cufflinks High-throughput Sequencing Data

Loyal A. Goft, Cole Trapnell
1 April, 2011

Contents

1

2

Requirements
Introduction

CummeRbund Classes

3.1 CuffSet Class e
3.2 CuffData Class
3.3 CuffFeatureSet Class
3.4 CuffFeature Class

Reading cuffdiff output
4.1 Adding additional feature annotation

Global statistics

Accessing Data
6.1 Writing your own SQL accessors

Creating Gene Sets
7.1 Geneset level plots

Individual Genes
8.1 Gene-level plots o

Data Exploration
9.1 Finding similar genes Lo oo

10 Miscellaneous

11 Known Issues

12 Session info

w N NN

SN

11
13

15
15

21
22

25
25

27

28

29

1 Requirements

e Cufflinks > v1.1.0 (Note: as of the release of this package, the current
version of cufflinks is 1.3.3. While this package will work with >v1.1, we
recommend updating your cufflinks prior to using cummeRbund)

e R >v27.0

e Packages:

RSQLite

ggplot2
— reshape

— plyr

2 Introduction

cummeRbund is a visualization package for Cufflinks high-throughput sequencing
data. The base class, cuffSet is a 'pointer’ to cufflinks data that are stored out-
of-memory in a sqlite database.

3 CummeRbund Classes
3.1 CuffSet Class

A pointer class to control access to the sglite tables holding the Cufflinks data.
The primary slot is DB which contains the RSQLite connection object. This
can be accessed using the DB() accessor. The additional slots (genes, isoforms,
TSS, and CDS) are each instances of the CuffData class and are pointers to
sets of tables for each data subtype. They can be accessed with similar accessor
wrappers. This is the default class created by readCufflinks. By default, Cuff-
Data accessor methods applied to a CuffSet class will operate on the ’genes’
slot.

3.2 CuffData Class

The CuffData class is also a pointer class to the SQL backend, but each instance
is specific for a data subtype (genes, isoforms, TSS, CDS). Again, there is an
DB slot (accessible using DB()) that contains the RSQLite connection object.
There are several accessor, setter, and plotting methods that allow for global
analysis of all features within a CuffData class.Subsetting is currently being
re-written, however, it is primarily done through the ’gene_id’ field. Available
slots for the CuffData class are:

e DB: RSQLite connection object

tables: A list of tables in the SQLite DB that contain the cufflinks data.

filters: A list of filters for subsetting (not implemented yet).

type: A character field describing the data (ie. ’genes’,’isoforms’,”T'SS’,’CDS’,’other’)

idField: The name of the identifying index field for this object (eg. 'gene_id’
for type="gene’, or ’isoform_id’ for type=’isoform’)

Making the best use of either the CuffSet or CuffData classes will enable you
to keep the entire dataset out of memory and significantly improve performance
for large cufflinks datasets.

3.3 CuffFeatureSet Class

The CuffFeatureSet class is a data-storage container that holds all available data
for a pre-determined list of features. Slots for FPKM data, differential regula-
tion data, and feature-level annotation are all available. Unlike the previous
classes, this class contains no connection information to the SQL database, but
rather contains several slots with data.frame objects storing multiple-features
worth of information. There are available accessors, and plotting methods that
are designed to present multiple-features worth of information (eg. heatmaps,
scatterplots, etc) Available slots for a CuffFeatureSet object include:

e annotation: Holds all feature-level annotation information for all features
in object.

e fpkm: A data frame of FPKM data across all samples, for all features in
object.

o diff: A data frame of differential expression/regulation data for all features
in object.

A specialized sub-class of CuffFeatureSet is the CuffGeneSet class. This
subclass adds additional slots to contain all isoforms, T'SS, and CDS information
for a given set of gene_ids. The CuffGeneSet class is designed to aggregate all
relevant information for a set of genes into one object for easy analysis and/or
manipulation. The CuffGeneSet object adds the following slots:

e ids: A ’character’ list of all gene_ids used in object.

e isoforms: A CuffFeatureSet object for all isoforms of genes in object.
e TSS: A CuffFeatureSet object for all TSS of genes in object.

e CDS: A CuffFeatureSet object for all CDS of genes in object.

3.4 CuffFeature Class

The CuffFeature class is designed for single-feature-level data analysis and plot-
ting. The methods available for this object are designed to analyze or visualize
information about a specific feature. This is a ’data’ object, as opposed to a
‘pointer’ object to the database backend. There is a validity requirement that a
CuffFeature object only point to data from a single feature. Available slots for
a CuffFeature object include:

e annotation: Holds feature-level annotation information for a given feature.
e fpkm: A data frame of FPKM data across all samples for a given feature.

e diff: A data frame of differential expression/regulation data for a given
feature.

A specialized sub-class of CuffFeature is the CuffGene class. This subclass
adds additional slots to contain all isoform, TSS, and CDS information for a
given gene. The CuffGene object adds the following slots:

e id: The common ’gene_id’ for all data in object

e isoforms: A CuffFeature object for all isoforms of a given gene.
e TSS: A CuffFeature object for all TSS of a given gene.

e CDS: A CuffFeature object for all CDS of a given gene.

Note: Future versions of cummeRbund may try to collapse the redundant
functionality of the CuffFeature and CuffFeatureSet classes.

4 Reading cuffdiff output

cummeRbund was designed to process the multi-file output format for a ’cuffdiff’
differential expression analysis. In this type of analysis, a user will use a reference
.gtf file (either known annotation or a .gtf file created from a cufflinks assembly
or merge of assemblies) and quantitate the expression values and differential
regulation of the annotation(s) in the .gtf file across two or more SAM/BAM
files. By design, cuffdiff produces a number of output files that contain test
results for changes in expression at the level of transcripts, primary transcripts,
and genes. It also tracks changes in the relative abundance of transcripts shar-
ing a common transcription start site, and in the relative abundances of the
primary transcripts of each gene. Tracking the former allows one to see changes
in splicing, and the latter lets one see changes in relative promoter use within a
gene.

Note: Cuffdiff requires that transcripts in the input GTF be annotated with
certain attributes in order to look for changes in primary transcript expression,

splicing, coding output, and promoter use.

These attributes are:

tss_id: The ID of this transcript’s inferred start site. Determines which
primary transcript this processed transcript is believed to come from. Cuf-
fcompare appends this attribute to every transcript reported in the .com-
bined.gtf file.

p-id The ID of the coding sequence this transcript contains. This attribute
is attached by Cuffcompare to the .combined.gtf records only when it
is run with a reference annotation that include CDS records. Further,
differential CDS analysis is only performed when all isoforms of a gene
have p_id attributes, because neither Cufflinks nor Cuffcompare attempt
to assign an open reading frame to transcripts.

cuffdiff calculates the FPKM of each transcript, primary transcript, and gene
in each sample. Primary transcript and gene FPKMs are computed by summing
the FPKMs of transcripts in each primary transcript group or gene group. The
results are output in FPKM tracking files, the structure of which can be found
in the cufflinks manual.

There are four FPKM tracking files:

isoforms.fpkm_tracking Transcript FPKMs

genes.fpkm_tracking Gene FPKMs. Tracks the summed FPKM of tran-
scripts sharing each gene_id

cds.fpkm_tracking Coding sequence FPKMs. Tracks the summed FPKM
of transcripts sharing each p_id, independent of tss_id

tss_groups.fpkm_tracking Primary transcript FPKMs. Tracks the summed
FPKM of transcripts sharing each tss_id

cuffdiff also performs differential expression tests between supplied condi-
tions. This tab delimited file lists the results of differential expression testing
between samples for spliced transcripts, primary transcripts, genes, and coding
sequences. For detailed file structure see cufflinks manual.

Four .diff files are created:

isoform_exp.diff Transcript differential FPKM.

gene_exp.diff Gene differential FPKM. Tests difference sin the summed
FPKM of transcripts sharing each gene_id

tss_group_exp.diff Primary transcript differential FPKM. Tests differences
in the summed FPKM of transcripts sharing each tss_id

e cds_exp.diff Coding sequence differential FPKM. Tests differences in the
summed FPKM of transcripts sharing each p_id independent of tss_id

In addition, cuffdiff also performs differential splicing, CDS usage, and pro-
moter usage tests for each gene across conditions:

e splicing.diff Differential splicing tests.
e (CDS.diff Differential coding output.

e promoters.diff Differential promoter use.

All of these output files are related to each other through their various track-

ing_ids, but parsing through individual files to query for important result infor-
mation requires both a good deal of patience and a strong grasp of command-line
text manipulation. Enter cummeRbund, an R solution to aggregate, organize,
and help visualize this multi-layered dataset.
One of the principle benefits of using cummeRbund is that data are stored in
a SQLite database. This allows for out-of-memory analysis of data, quick re-
trieval, and only a one-time cost to setup the tables. By default, cummeRbund
assumes that all output files from cuffdiff are in the current working directory.
To read these files, populate the ’cuffData.db’ database backend, and return the
CuffSet pointer object, you can do the following.

> library(cummeRbund)

> cuff <- readCufflinks(system.file("extdata", package="cummeRbund"))
> cuff

CuffSet instance with:
3 samples
400 genes
1203 isoforms
575 TSS
545 CDS
960 promoters
1725 splicing
696 relCDS

Again, by default dir is assumed to be the current working directory and cuff<-
readCufflinks () should work if all appropriate files are in the current working
directory. Should you need to rebuild the SQLite backend for any reason, you
can add the option rebuild=T to readCufflinks. Once the database is created,
readCufflinks will default to using the SQL backend and should not need to
rebuild this database. Each R session should begin with a call to read Cufflinks so
as to initialize the database connection and create an object with the appropriate
RSQLite connection information.

4.1 Adding additional feature annotation

Gene- or feature-level annotation can be permanently added to the database
tables for future querying. If you have a data.frame where the first column
contains the ’tracking_id’ (eg. ’'gene_id’ for genes, ’isoform_id’ for isoforms, etc).
You can easily add feature level annotation using the addFeatures() function:

> #annot<-read.table("gene_annotation.tab",sep="\t",header=T,na.string="-")
> #addFeatures (cuff,annot,level="genes")

By default, features added to a CuffSet object are assumed to be gene-level
annotations, but the level can selected using the argument level. Features added
to a CuffData object are assumed to be of the same type as the "type’ value for
that given object (e.g. gene-level features for ’genes’, isoform-level features for
isoforms, etc.)

5 Global statistics

Several plotting methods are available that allow for quality-control or global
analysis of cufflinks data. For example, to assess the distributions of FPKM
scores across samples, you can use the csDensity plot (Figure 1).

> dens<-csDensity (genes (cuff))
> dens

genes

0.35-

0.30-

0.25-

0.20- sample_name
hESC
Fibroblasts

iPS

density

0.15-

0.10-

0.05-

0.00-

2 3
log10(fpkm)

Boxplots can be visualized using the csBozplot method (Figure 2).

> b<-csBoxplot (genes (cuff))

>b
6 -
5 -
4 -
3 -
’E“ sample_name
j—f,_z BS hEsC
§ ‘ Fibroblasts
g BEE irs
l -

oS3y~
Sdi -

sise|qoiqid —

sample_name

Pairwise comparisons can be made by using csScatter. You must specify the
sample names to use for the z and y axes:

> s<-csScatter(genes (cuff),"hESC", "Fibroblasts", smooth=T)
> s

genes

105 -

104 ..
2] 3
210° -
3
Qo
o
o
2
(TR

102 -

101 -

10°

o
) I I I))
10° 10 10° 10° 10* 10° 10°
hESC

Volcano plots are also available for the CuffData objects. Again, you must
specify the comparisons by sample name.

> v<-csVolcano(genes (cuff), "hESC", "Fibroblasts")
> v

—log;o(p value)

-5 0
log,(fold change)

10

6 Accessing Data

Feature-level information can be accessed directly from a CuffData object using
the fpkm, diffData, or features methods:

> gene.features<-features(genes (cuff))
> head(gene.features)

gene_id class_code nearest_ref_id gene_short_name

1 XLOC_000001 <NA> <NA> <NA>
2 XLOC_000002 <NA> <NA> OR4F5
3 XL0OC_000003 <NA> <NA> <NA>
4 XL0OC_000004 <NA> <NA> <NA>
5 XLOC_000005 <NA> <NA> <NA>
6 XLOC_000006 <NA> <NA> OR4F16
locus length coverage gene_id
1 chr1:11873-29961 NA NA <NA>
2 chr1:69090-70008 NA NA <NA>
3 chr1:321083-321114 NA NA <NA>
4 chr1:321145-321223 NA NA <NA>
5 chr1:322036-328580 NA NA <NA>
6 chr1:367658-368595 NA NA <NA>
> gene.fpkm<-fpkm(genes (cuff))
> head(gene.fpkm)
gene_id sample_name fpkm conf_hi conf_lo
1 XLOC_000001 Fibroblasts 16.401100 428.14700 0
2 XLOC_000001 hESC 0.723836 3.01108 0
3 XLOC_000001 iPS 54.067200 1402.31000 0
4 XLOC_000002 Fibroblasts 0.000000 0.00000 0
5 XLOC_000002 hESC 0.000000 0.00000 0
6 XLOC_000002 iPS 0.000000 0.00000 0
quant_status
1 LOWDATA
2 0K
3 LOWDATA
4 0K
5 0K
6 0K
> isoform.fpkm<-fpkm(isoforms (cuff))

> head(isoform.fpkm)
isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000001 Fibroblasts 11.910700 19.96650 3.85498
2 TCONS_00000001 hESC 0.000000 0.00000 0.00000

11

TCONS_00000001 iPS 9.563700 23.68410 0.00000
TCONS_00000002 Fibroblasts 0.000000 .55378 0.00000
TCONS_00000002 hESC 0.723836 3.01108 0.00000
TCONS_00000002 iPS 32.934400 47.93760 17.93130

quant_status

0K

0K

LOWDATA

0K

0K

0K

D O W
0]

DOV WN -

v

gene.diff<-diffData(genes (cuff))
> head(gene.diff)

gene_id sample_1 sample_2 status value_1 value_2
1 XLOC_000001 hESC Fibroblasts 0K 7.23836e-01 16.4011
2 XL0OC_000002 hESC Fibroblasts NOTEST 0.00000e+00 0.0000
3 XL0OC_000003 hESC Fibroblasts NOTEST 0.00000e+00 0.0000
4 XLDC_000004 hESC Fibroblasts 0K 1.20000e+06 22616.4000
5 XLOC_000005 hESC Fibroblasts 0K 1.13903e+03 41.1644
6 XLOC_000006 hESC Fibroblasts NOTEST 0.00000e+00 0.0000
In_fold_change test_stat p_value q_value significant
1 4.50198 -0.246654 0.805176 0.893616 no
2 0.00000 0.000000 1.000000 1.000000 no
3 0.00000 0.000000 1.000000 1.000000 no
4 -5.72952 1.310270 0.190105 0.300329 no
5 -4.79027 10.857600 0.000000 0.000000 yes
6 0.00000 0.000000 1.000000 1.000000 no

Vectors of sample names and feature names are available by using the samples
and featureNames methods:

> sample.names<-samples (genes (cuff))
> head(sample.names)

[1] "hESC" "Fibroblasts" "iPS"

> gene.featurenames<-featureNames (genes (cuff))
> head(gene.featurenames)

[1] "XLOC_000001" "XLOC_000002" "XLOC_000003" "XLOC_000004"
[5] "XLOC_000005" "XLOC_000006"

To facilitate Bioconductor-like operations, an 'FPKM-matrix’ can be re-
turned easily using the fpkmMatriz method:

> gene.matrix<-fpkmMatrix(genes (cuff))
> head(gene.matrix)

12

hESC Fibroblasts iPS

XL0OC_000001 7.23836e-01 16.4011 54.06720
XLOC_000002 0.00000e+00 0.0000 0.00000
XLOC_000003 0.00000e+00 0.0000 0.00000
XLOC_000004 1.20000e+06 22616.4000 0.00000
XLOC_000005 1.13903e+03 41.1644 944.30800
XLOC_000006 0.00000e+00 0.0000 9.00455

6.1 Writing your own SQL accessors

Since the cufflinks is a SQLite database backend, if you are familiar with SQL
and/or RSQLite query construction, you can simply design your own SQL
queries to access the data that you are after.

13

(S)HVHOUVA Smigisjuenb <
V04 000 ¢

(SP)HYHOBVA Weoyubis <
1vOTd onjend ¢
VO3 onjend

VO eisTIse) ¢
YO 9BuBLSPIoj Ul ¢
AVO g onieA <
AVO4 LonieA <

smeis ©

(SP)HYHOHVA Sniels uenb <
VO3 07 1400 &

(SHIBVHOBVA Jueoyubls
VO3 onjenb
1V onend

VO RIS Is01
LVO4 9BuBYYPIOj Ul ¢
VO Z7enjeA <
VO K7enjeA <

sneis

(S)HVHOUVA 2 eidues &
(SY)HVHOUVA 1~ eidures &
(SY)HVHOHVA PI S0 ©

VO 14000 &
VO witd) <

(SP)HYHOHVA oweu~eldures ¢
(Sb)HYHOHVA P uiojos| &

(S¥)HYHOHVA 2 eldwes &
(S¥)HYHOHVA 1 eldwes &
(SY)HYHOUVA PIWi0j0s) &

1VOT4 86I0n00 <
ANI Wbuey <

(SY)HYHOBVA P wiojos: &

(SP)HYHOHVA WuEOUUBS |
VO enjen b |
AvO4 onjend <

(S¥)HYHOHVA Weoyubls <
VO3 onjenb

(SH)HVHOHYA snieis < |
(SP)HVHOBVA 2 oldwes &
(SP)HVHOBVA | oldwes &

(S¥)HVHOBYA I ouab &
(S9)HYHOBYA PIdnoib sSL @

(Sp)HVHOBYA Snieis ©
2 oidues &

$nooj &
(SPIHYHOUVA PIjor isoseou &

oueu”oldues ©
(S)HVHOHYA PI'S@D ©

LYO4 9Besanco

sneis uenb |

NI Uiua) &

(SY)4YHOBVA S190| ©
PIrdn0i6 1 O

A¥O4 0 Ju0o
AYO 147 JU00
1vO3 wnidy ©

(SIHVHOUVA PI"ouob <
(SP)HVHOUYA PIjoI Is0s80U ©
(S¥)HVHOHVA 0p0d”ssE <
(S5)HYHOHVA PI"S@D

1ore1 SG0

(SH)HVHOVA oweu ojdwes &
(SP)HYHOBVA pIouab &

Y04 06210800 <

NI Wbua|
T (SYIHVHOBVA sno0| ©

opossser ¢
(S)HVHOUVA PI-dnoi6 ssL © |
(SPIHVHOBVA PI"SA0 |

(5v)uvHOBYA preueb ¢ >
(S¥)UYHOBYA PI"wiojos) £

1oneT wiojos|

i suiBUyoys U8k

(SYIHVHOUVA ueoyubis ©
V0TS OneA b
V074 onend

VO s 801 €

LVO"3 9BuByO™ploj Ul ¢
V014 2 oA <

VO oA <
(sv)avHoBYA siets © [
(SP)HYHOBYA 2 eidwes &
(SIHYHOHYA | ordwes &
(SY)HYHOUVA P dnoib ssL &

(S)HYHOUVA PI"0uab &

prjerisaeu ¢
6poo-ssep ¢
(SP)HYHOHVA pI"0udb

OS]

ouweu~ejduies |

NI ¥epur-ejdures ©

(Sv)EVHOHVA 1~ eidures &
(SY)HYHOHVYA piouab &

(SY)HYHOHVA enjen <

—e—ce, S I
i =
Snjeis enb ¢ i —E
h o
T =
= f =
1vord widy 7 1=
(S#IHVHOHVA WBouBis < (SrlevHOUYA o,“z “,uaeuu * “
——| P) S (SPuvHOWVAPrdnOS SSL e | | _
_ wowemedol T L G i
VO s 159 © | .“. 4
- LvoHspSr ol ———— |
1¥014 7 enien | —
- LVOT4 1 enjen & | T Ot Avod °©
(SP)HYHOBVA smieis < ANI wudy
snooj ©
prouet o
T prrjoisormeu O

(SP)UYHOHVA PI0uab &

siso uounquisiq

(S¥)HYHOBVA 9poo™sseI0 €
(SP)HYHOUVA P dnoib SS1

1or7 dnoiD SSL.

(S¥IHVHOUVA Jolowesed ¢
(5)HYHOHVA oueu~oiduwes &

1oA0] Wwowodg

14

7 Creating Gene Sets

Gene Sets (stored in a CuffGeneSet object) can be created using the getGenes

method on a CuffSet object. You must first create a vector of ’gene_id’ or

‘gene_short_name’ values to identify the genes you wish to select:

> data(sampleData)
> myGenelds<-samplelDs
> myGenelds

[1] "XLOC_001363" "XLOC_001297" "XLOC_001339" "XLOC_000132"
[5] "XLOC_001265" "XLOC_000151" "XLOC_001359" "XLOC_000069"
[9] "XLOC_000170" "XLOC_000105" "XLOC_001262" "XLOC_001348"
[13] "XLOC_001411" "XLOC_001369" "XLOC_000158" "XLOC_001370"
[17] "XLOC_001263" "XLOC_000115" "XLOC_000089" "XLOC_001240"

> myGenes<-getGenes (cuff,myGenelds)
> myGenes

CuffGeneSet instance for gemnes c("XLOC_000069", "XLOC_000089", "XLOC_000105", "XLOC_000115",
Short name: ESPN PGD MFN2 PRAMEF1 EFHD2 PADI1 NA FAM43B UBE2J2 Clorf86 SLC2A7 SPATAC

Slots:
annotation
fpkm
diff
isoforms CuffFeatureSet instance of size 45
TSS CuffFeatureSet instance of size 18
CDS CuffFeatureSet instance of size 31

The same fpkm, fpkmMatriz, features, diff Data, samples, and featureNames are
available for instances of the CuffGeneSet class.

7.1 Geneset level plots

There are several plotting functions available for gene-set-level visualization:

> h<-csHeatmap (myGenes, cluster="'both')
> h

15

XLOC_001411
XLOC_000151
XLOC_001369
XLOC_001339
XLOC_001262
XLOC_001265
XLOC_001240
XLOC_000105
XLOC_001359

log;o FPKM + 1

XLOC_001370

| B
XLOC_000132
XLOC_ 001263 . 1
XLOC_000089 . 2
XLOC_000158 3
XLOC_000069 4

XLOC_000170
XLOC_001297
XLOC_001363
XLOC_000115
XLOC_001348

os3ay
Sd!

I
=3
g
5]
=2
1]
a
@

> s<-csScatter (myGenes, "Fibroblasts", "hESC", smooth=T)
> s

16

[
(=]
r

=
o
w

103.5

10%°

hESC FPKM + 1
T

[
o
™

10"°

10"° 10? 10%° 10° 10*° 10*
Fibroblasts FPKM + 1

> v<-csVolcano (myGenes, cluster="'both')
> v

17

12-

10-

[ee]
1

significant
no

yes

-log10(p_value)
T

0- .

| |
-20 -10 10 20

0
In_fold_change

Similar plots can be made for all sub-level features of a CuffGeneSet class by
specifying which slot you would like to plot (eg. isoforms(myGenes), TSS(myGenes), CDS(myGenes)).

> ih<-csHeatmap (isoforms (myGenes),cluster='both',labRow=F)
> ih

18

log;o FPKM + 1

3
]

s)se|golqi
253y

Rudimentary k-means clustering is implemented as well.

> ic<-csCluster (myGenes,k=4)
> ic

19

%)
Q
2
=}
o
o
2
w
Q
(%)
w
=

anfea

hESC Fibroblasts iPS

hESC Fibroblasts iPS

variable

20

8 Individual Genes

An individual CuffGene object can be created by using the getGene function
for a given ’gene_id’.

> myGeneId<-"PINK1"
> myGene<-getGene (cuff,myGeneId)
> myGene

CuffGene instance for gene PINK1

Short name: PINK1

Slots:
annotation
fpkm
diff
isoforms CuffFeature instance of size 2
TSS CuffFeature instance of size 2
CDS CuffFeature instance of size 2

> head (fpkm (myGene))

gene_id sample_name fpkm conf_hi conf_lo
1 XLOC_000172 Fibroblasts 2919.340 4002.960 1835.730
2 XL0OC_000172 hESC 693.465 813.869 573.062
3 XL0OC_000172 iPS 1598.040 2282.380 913.710
quant_status
1 0K
0K
3 0K

> head (fpkm(isoforms (myGene)))

isoform_id sample_name fpkm conf_hi conf_lo
1 TCONS_00000480 Fibroblasts 2101.640 3111.330 1091.9400
2 TCONS_00000480 hESC 573.512 668.688 478.3370
3 TCONS_00000480 iPS 1598.040 2282.380 913.7100
4 TCONS_00000481 Fibroblasts 817.704 1391.700 243.7120
5 TCONS_00000481 hESC 119.9563 152.675 87.2311
6 TCONS_00000481 iPS 0.000 0.000 0.0000
quant_status
1 0K
2 0K
3 0K
4 0K
5 0K
6 0K

21

8.1 Gene-level plots

> gl<-expressionPlot (myGene)

> gl
PINK1
4000 - —
3500 -
3000 -
2500 -
= tracking_id
2 2000 -
o . — XLOC_000172
[
1500 -
1000 - 1
I I I
= m 5
m & 3
wn =
o &
oy
%]
@
sample_name

> gb<-expressionBarplot (myGene)
> gb

22

PINK1
XLOC_000172

4000 -

3000 -

2000 -

FPKM

1000 -

0-

|
0
2]

oS3y -
sise|qoiqid -

>
]
3
]

sample_|

> igb<-expressionBarplot (isoforms (myGene))
> igb

23

FPKM

3000 -

2500 -

2000 -

1500 -

1000 -

500 -

0-

I
=2
m
%]
(]

PINK1
TCONS_00000480 TCONS_00000481

..

sise|qoIqld -

Sd!
253y -
sise|qoql -
Sdi-

sample_name

24

9 Data Exploration

The cummeRbund package is more than just a visualization tool as well. We are
working to implement several different means of data exploration from gene and
condition clustering, finding features with similar expression profiles, as well as
incorporating Gene Ontology analysis.

9.1 Finding similar genes

One common question in large-scale gene expression analyses is 'How can 1
find genes with similar expression profiles to gene z?’. We have implemented a
method, findSimilar to allow you to identify a fixed number of the most similar
genes to a given gene of interest. For example, if you wanted to find the 20
genes most similar to "PINK1”, you could do the following:

> mySimilar<-findSimilar (cuff, "PINK1",n=20)
> mySimilar.expression<-expressionPlot(mySimilar,logMode=T, showErrorbars=F)

FPKM + 1

) I I
hESC Fibroblasts iPS
sample_name

You are also able to provide your own expression profile in lieu of a 'gene_id’.
The vector provided must match the order and length of samples().

> myProfile<-c(500,0,400)
> mySimilar2<—findSimilar(cuff,myProfile,n=10)
> mySimilar2.expression<-expressionPlot (mySimilar2,logMode=T, showErrorbars=F)

25

10° -

l025_

102_

1015_

FPKM + 1

1005_

107 -

) I 1
hESC Fibroblasts iPS
sample_name

findSimilar() uses the Jensen-Shannon distance between the probability dis-
tributions of each gene across conditions to determine the similarity. We have
found this to be a more robust way to determine distance between genes using
the high dynamic range of FPKM data. Future versions may allow for other
dissimilarity measures to be used instead.

26

10 Miscellaneous

e All plotting functions return ggplot objects and the resulting objects can
be manipulated /faceted/altered using standard ggplot2 methods.

e There are occasional DB connectivity issues that arise. Not entirely sure
why yet. If necessary, just readCufflinks again and this should solve
connectivity issues with a new RSQLite connection object. If connectivity
continues to be a problem, try cuff<-readCufflinks(rebuild=T)

e I am still working on fully documenting each of the methods. There are a
good number of arguments that exist, but might be hard to find without
looking at the source.

27

11 Known Issues

e You must have at least one p_id field (see cufflinks manual) in your cuffdiff
reference gtf file. Otherwise no results will be populated for the CDS.diff
files and nothing will be available for cummeRbund to parse. This is
described in more detail in the cuffdiff section of the cufflinks user guide.

e Large cuffdiff runs (e.g. >10 conditions) produce very large results files.
These will take some time to parse and populate the cuffData.db sqlite
database. While this is only a one time cost, the process can take a while.
We are working on making the table writes and indexing significantly
faster.

e Cuffdiff does not ’require’ that gene_ids, isoform_ids, TSS_group_ids, or
CDS_ids be unique in your reference gtf file. In fact, duplicate IDs will
be aggregated by cummeRbund in the indexing phase and will produce
undesireable effects. Please ensure that all of your IDs are unique prior to
running cuffdiff (see cuffmerge for help) to avoid this issue.

28

12 Session info
> sessionInfo()

R version 2.14.0 (2011-10-31)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] grid stats graphics grDevices utils datasets
[7] methods Dbase

other attached packages:

[1] cummeRbund_1.0.0 ggplot2_0.8.9 proto_0.3-9.2
[4] reshape_0.8.4 plyr_1.6 RSQLite_0.10.0
[7] DBI_0.2-5

loaded via a namespace (and not attached):
[1] digest_0.5.1 tools_2.14.0

29

	Requirements
	Introduction
	CummeRbund Classes
	CuffSet Class
	CuffData Class
	CuffFeatureSet Class
	CuffFeature Class

	Reading cuffdiff output
	Adding additional feature annotation

	Global statistics
	Accessing Data
	Writing your own SQL accessors

	Creating Gene Sets
	Geneset level plots

	Individual Genes
	Gene-level plots

	Data Exploration
	Finding similar genes

	Miscellaneous
	Known Issues
	Session info

