
rqubic
March 24, 2012

QUBICBiclusterSet-class
Class "QUBICBiclusterSet"

Description

Object representing a set of biclusters identified by the QUBIC algorithm. The class structure
inherits the Biclust class in the biclust package.

Objects from the Class

Created by functions parsing the output files of QUBIC command line tool, or functions calling
QUBIC algorithm implementations in R.

Not intended to be created manually by end-users. However, interested users are invited to review
the source code or use the showClass method to view the construction of the class.

Slots

See the class structure of Biclust. The slots Parameter and Info have been filled with
lists releveant to the QUBIC algorithm, and all items should be accessed by S4-methods to
make sure the consistency.

Methods

Svalue signature(object = "QUBICBiclusterSet", index = "missing"): Re-
turn S values of QUBIC biclusters as a vector

Svalue signature(object = "QUBICBiclusterSet", index = "numeric"): S
values of specified bicluster(s) are returned. Index is one or a vector of integers. Non-integers
will be coereced.

[signature(x = "QUBICBiclusterSet", i = "ANY", j = "missing", drop
= "missing"): Returning a subset of the current QUBICBiclusterSet.

parameter signature(object = "Biclust", index = "character"): return an
input parameter specified by the parameter name

parameter signature(object = "Biclust", index = "missing"): return a list
of input parameters used by the biclustering algorithm, for example QUBIC

1

2 quantileDiscretize

info signature(object = "Biclust", index = "ANY"): return information of the
biclusters. For end-users, specific information accessors should be preferred, for example
features, conditions and Svalue

info signature(object = "Biclust", index = "missing"): return all informa-
tion of the biclusters in a list. For end-users, specific information accessors should be pre-
ferred, for example features, conditions and Svalue

show signature(object = "QUBICBiclusterSet"): showing method

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

Guojun Li, Qin Ma, Haibao Tang, Andrew H. Paternson and Ying Xu (2009) QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 37:e101

See Also

Biclust is the basic block accomodating biclusters identified by the QUBIC algorithm.

Examples

showClass("QUBICBiclusterSet")

quantileDiscretize Discretize expression matrix for qualitative biclustering

Description

Performs recursive quantilizations on gene expression data across samples, to quantileDiscretize
gene expression matrix. The quantile parameter q determines the estimated proportion of differen-
tially expressed genes (2q as for both up- and down-regulatons). The rank parameter r determines
how many discrete levels should differentially expressed genes (or outliers) have. See details below.

Usage

quantileDiscretize(x, ...)

Arguments

x It can be an object of the eSet class or inheriting it. The most commonly used
form is an linkS4class{ExpressionSet} class. Alternatively, it can be
a numeric matrix.

... Currently, the . . . accepts two parameter: q and rank, explained below.

• qEstimated proportion of conditions where gene is up- or down-regulated,
value between (0, 0.5), default value is set to 0.06. By specifying q one
estimates that in 2q of all conditions, the expression value of a gene is
considered as outlier.

quantileDiscretize 3

• rankRanks (levels) of outliers, a positive integer, default is 1L. By default,
all conditions get one label for each gene in −1, 0, 1, representing down
expression, not changing and high expression respectively. In case rank >
1, the outliers are further divided into rank levels by applying recursive
quantilization with equal intervals.

Details

Parameter q corresponds to the command line option -q in the QUBIC command line tool, and the
rank option corresponds to -r.

For each gene, the algorithm applies quantile discretization first to divide conditions into negative
(lower), un-changed and positive (higher) expressions. Negative and positive expressed conditions
are considered as outliers. For outliers in each direction, the algorithm tries to further quantileDis-
cretize the expression values in case rank > 1.

This second discretization step is performed by dividing the sorted outliers into rank tandom groups
with equal conditions. A label is assigned to each of these tandom groups, in the following order:

−1,−2, . . . ,−rank

for outliers with negative expression, from the most negative group to the least negative group (not
the other way around!).

Similarly, for positive outliers, labels in the order of

rank, rank − 1, . . . , 1

are assigned to tandom groups from the least positive group to the most positive group.

That is, signs of labels indicate the direction of gene expression change, and the absolute value
represents the quantileDiscretized rank in the outliers.

Value

An object of the same class as the input parameter, with the exprs slot replaced by the quan-
tileDiscretized matrix, which is a matrix of integer.

Note

Note that the resulting discrete matrix of this implementation can be slighly different from the one
used by the QUBIC command line tool.

The main reason for this is the internal data type: while QUBIC uses float to represent expression
matrix, we use double to represent the matrix.

It has the advantages of interfacing to R, having higher precision and avoiding errors caused by
floating presentation. It is implemented with potential larger costs of memory, however for test data
sets (for example the ALL dataset with more than 120 samples and 12000 genes) the peak memory
use (<100M) as well as the execution time (CPU time 0.028s) are well under control.

The differentially is especially often observed when there are many tied values. These cases how-
ever are very rare cases and we assume they will not affect the results to a large extent.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

4 eSetDimName

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:e101

See Also

parseQubicChars parses the quantileDiscretized matrix by the QUBIC command line tool into
a data frame.

Examples

data(sample.ExpressionSet, package="Biobase")
sample.disc <- quantileDiscretize(sample.ExpressionSet)
exprs(sample.disc)[1:6, 1:6]

Equivalent to pass a numeric matrix
sample.mat.disc <- quantileDiscretize(exprs(sample.ExpressionSet))
sample.mat.disc[1:6, 1:6]
Not run: identical(exprs(sample.disc),sample.mat.disc)

with multiple ranks
sample.rank3 <- quantileDiscretize(sample.ExpressionSet, rank=3)
exprs(sample.rank3)[1:6, 1:6]

eSetDimName Get dimname from an eSet object

Description

This function is implemented to automatically validate and choose feature (sample) names from
the user input. This function is exported for the purpose of easing other Bioconductor developers
performing the similar job, and is not tended to be called by end-user directly.

Usage

eSetDimName(eset, input, type = c("feature", "sample"))

Arguments

eset An object of eSet class, mostly an ExpressionSet class.
input The user input, see details below
type Either ‘feature’ or ‘sample’, indicating which dimension should be determined

Details

The input can be one of the following three possibilities:

• Missing. Depending on the type, the results of calling featureNames (“feature”) or sampleNames
(“sample”) on the eset object will be returned.

• A character string of length 1. Depending on the type, it is first to be machted to the column
names of either fData or pData results of the eset object. If found, the values in that
column are returned (coerced to characters if necessary). If not found, the function stops by
raising an error.

eSetDimName 5

• A character vector of the length equal to one of the two dimensions of the eset. In this scenario,
the function only validates the equality of the length, coerces the input into characters, and
return them.

If none of the scenarios above was met, the function stops by raising an error.

Value

A vector of characters, the length of which determined by the dimension of the input object.

Note

A special case arises if one of the dimensions of the eset object is 1: In this case, the input value
is interpreted as the new name and returned. No column name match will take place in this case.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

sampleNames, featureNames, fData, pData

writeQubicInputFile calls the function.

Examples

data(sample.ExpressionSet)
sub.eset <- sample.ExpressionSet[1:3, 1:3]

usage one:
eSetDimName(sub.eset, type="feature")
eSetDimName(sub.eset, type="sample")

usage two
"sex" is one column in the pData(sub.eset)
eSetDimName(sub.eset, input="sex", type="sample")
Not run: eSetDimName(sub.eset, input="foo", type="sample")

usage three
eSetDimName(sub.eset, input=paste("Sample", 1:3), type="sample")
Not run: eSetDimName(sub.eset, input=paste("Sample", 1:4),
type="sample")
End(Not run)

special case: dim equals to one
eSetDimName(sub.eset[,1], input="foo", type="sample")

6 features-methods

features-methods Extract features and conditions

Description

Generic function features and conditions, as well as auxillary count functions, are imple-
mented for QUBICBiclusterSet objects.

They can be used in one of the following forms:

1. Used on a QUBICBiclusterSet, and without specifying index, features or conditions
returns the unique and ordered features or conditions involved in at least one bicluster, and
featureCount or conditionCount returns the length of repsective vectors. To get the
feature/condition numbers in each bicluster of the set, use BCfeatureCount/BCconditionCount.

2. Used on a QUBICBiclusterSet and provided index (indices), the features/conditions or
their counts are returned for specified biclusters.

In addition, featureNames and sampleNames are of the same implementation as features
and conditions.

Methods

signature(object = "QUBICBicluster") Information about all the biclusters.

signature(object = "QUBICBiclusterSet", index = "missing") Information
about all the biclusters in the set.

signature(object = "QUBICBiclusterSet", index = "ANY") Information about
selected biclusters in the set, the index can be integers or logical variables for subsetting.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

Guojun Li, Qin Ma, Haibao Tang, Andrew H. Paternson and Ying Xu (2009) QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 37:e101

See Also

Methods are also documented in QUBICBiclusterSet.

Examples

example.file <- system.file("extdata", "sampleExpressionSet.blocks", package="rqubic")

example.block <- parseQubicBlocks(example.file)

head(features(example.block))
featureCount(example.block)
head(conditions(example.block))
conditionCount(example.block)

BCfeatureCount(example.block)

generateSeeds-methods 7

BCfeatures(example.block)[1:2]
BCconditionCount(example.block)
BCconditions(example.block)[1:2]

head(featureNames(example.block))
head(sampleNames(example.block))

generateSeeds-methods
Generate seeds for biclustering

Description

generateSeeds takes either matrix or an ExpressionSet object to generate seeds. Seeds
are defined as pairs of genes (edges) which share coincident expression levels in samples. The
higher the coincidence, the higher the score of the seeds will be. The seeds are generated by sub-
sequent comparing each pair of genes. When all seeds have been produced, they are sorted by the
coincidence scores and returned as an object. See the details section for notes on implementation.

Methods

In the rqubic package, generateSeeds currently supports two data types: ExpressionSet
(an inherited type of eSet, or numeric matrix.

Both methods requires in addition a parameter, minColWidth, specifying the minimum number
of conditions shared by the two genes of each seed. Its default value is 2. When this default value
is used, the minimum coincidence score is defined as max(2, ncol/20), where ncol represents the
number of conditions. When a non-default value is provided, the value is used to select seeds.

signature(object = "eSet") An object representing expression data. Note that the exprs
must be a matrix of integers, otherwise the method warns and coerces the storage mode of ma-
trix into integer.

signature(object = "matrix") A matrix of integers. In case filled by non-integers, the
method warns and coerces the storage mode into integer

Details

The function compares all pairs of genes, namely all edges of a complete graph composed by
genes. The weight of each edge is defined as the number of samples, in which two genes have the
same expression level. This weight, also known as the coincidence score, reflects the co-regulation
relationship between two genes.

The seed is chosen by picking edges with higher scores than the minimum score, provided by the
minColWidth parameter (default: 2).

To implement such a selection algorithm, a Fibonacci heap is constructed in the C codes. Its size is
predefined as a constant, which should be reduced in case the gene number is too large to run the
algorithm. A new seed, which was selected by having a higher coincidence score than the minimum,
is inserted to the heap. And dependent on whether the heap is full or not, it is either inserted by
squeezing the minimum seed out, or put into the heap directly.

Once the heap is filled by examining all pairs of genes, it is dumped into an array of edge pointers,
with decreasingly ordered edge pointers by their scores. This array is captured as an external pointer,
attached as an attribute of an rqubicSeeds object.

8 parseQubicBlocks

An rqubicSeeds object holds an integer, which records the height of the heap. It has (besides
the class identifier) two attributes: one for the external pointer, and the other one for the threshold
of the coincidence score.

Note

In the rqubic implementation, the variable arr_c[i][j] holds the level symbols (−1, 0, 1
in the default case), whereas in the QUBIC implementation, this variable holds the index of level
symbols, and the level symbols are saved in the global variable symbols.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

data(sample.ExpressionSet, package="Biobase")
sample.disc <- quantileDiscretize(sample.ExpressionSet)
sample.seeds <- generateSeeds(sample.disc)
sample.seeds

with higher threshold of incidence score
sample.seeds.higher <- generateSeeds(sample.disc, minColWidth=5)
sample.seeds.higher

parseQubicBlocks Parse QUBIC Command Line Tool Output Files

Description

These functions parse output files of the QUBIC command line tool developed by Ma et al.

Usage

parseQubicRules(filename)
parseQubicChars(file, check.names=FALSE, ...)
parseQubicBlocks(filename)

Arguments

filename Input filename
file Input filename
check.names logical, should the column names be checked?
... other parameters passed to the read.csv function

Details

Parse QUBIC Command Line Tool Output Files

Value

parseQubicRules and parseQubicChars both return a data frame.

parseQubicBlocks returns an instance of QUBICBiclusterSet class.

quBicluster 9

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

http://csbl.bmb.uga.edu/~maqin/bicluster/

Examples

getRqubicFile <- function(filename) system.file("extdata", filename, package="rqubic")

parse QUBIC rules
rule.file <- getRqubicFile("sampleExpressionSet.rules")
rqubic.sample.rule <- parseQubicRules(rule.file)

parse QUBIC chars
chars.file <- getRqubicFile("sampleExpressionSet.chars")
rqubic.sample.chars <- parseQubicChars(chars.file)

parse QUBIC blocks
block.file <- getRqubicFile("sampleExpressionSet.blocks")
rqubic.sample.data <- parseQubicBlocks(block.file)

quBicluster Qualitative Biclustering

Description

The function takes seeds and quantileDiscretized ExpressionSet as input, biclusters the data and
returns an object holding biclusters. Users may control the report number of clusters, tolerance of
incoherent genes (or conditions), as well as the filtering of redundant clusters.

Usage

quBicluster(seeds, eset, report.no = 100L, tolerance = 0.95, filter.proportion = 1)

Arguments

seeds An object of the S3-class rqubicSeeds, representing seeds generated from
the quantileDiscretized expression data

eset Discretized expression data

report.no Number of biclusters that should be reported. Detected biclusters are ranked by
the S-score, which is defined by the product of gene counts and sample counts.
They are ordered and the top ones are reported.

tolerance Percentage of tolerated incoherent samples, 0.95 by default
filter.proportion

Proportion of a cluster, over which the cluster is considered as redudant. Each
bicluster is compared to all better ranking biclusters, and the overlapping pro-
portion is measured by the proportion of the product of overlapping samples and
overlapping genes, to the product samples and genes. If the proportion is larger
than the given threshold, the block will be considered redundant and therefore
not reported. Setting the threshold to 1 (default) does not perform any filtering.

http://csbl.bmb.uga.edu/~maqin/bicluster/

10 rqubic-package

Details

The function calls a C routine to perform the biclustering. Currently the routine returns blocks with
fewer samples specified by the minimum column number, due to the set of tolerance values. This
might be changed in the fewer versions.

Value

An object of the QUBICBiclusterSet-class, holding all biclusters.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:e101

See Also

quantileDiscretize and generateSeeds

Examples

data(sample.ExpressionSet)
rqubic.example.discret <- quantileDiscretize(sample.ExpressionSet, rank=2L)

rqubic.example.sel.seeds <- generateSeeds(rqubic.example.discret, minColWidth=2L)

rqubic.example.blocks <- quBicluster(rqubic.example.sel.seeds,
rqubic.example.discret,
report.no=200L,
filter.proportion=0.1)

print features in each bicluster
BCfeatures(rqubic.example.blocks)

rqubic-package Qualitative biclustering algorithm for expression data analysis

Description

QUBIC is a qualitative biclustering algorithm for high-throughput expression data analysis. rqubic
package implements this algorithm in R, partly with the codes contributed by Haibao Tang and Qin
Ma (version 0.23 released without any limitation).

The rqubic package also provides parsers for the command line tool of qubic written in C.

writeQubicInputFile 11

Details

Package: rqubic
Type: Package
Version: 1.5
Date: 2011-04-11
License: LGPL-2
LazyLoad: yes

Part of the source code in C is modified from the source code of the QUBIC command line tool (in
C) provided by Haibao Tang and Qin Ma <maqin@csbl.bmb.uga.edu>, downloaded from
http://csbl.bmb.uga.edu/~maqin/bicluster/ on 01.03.2011, version 0.23.

Source code of QUBIC also uses open-source data structure library codes. See the README file
included in the QUBIC command line tool source.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>, Laura Badi and Martin Ebeling Maintainer:
Jitao David Zhang <jitao_david.zhang@roche.com>

References

Li et al. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
Nucleic Acids Research 37:e101

writeQubicInputFile
Write an ExpressionSet object into the file format required by the
QUBIC command line tool

Description

The QUBIC commmand line tool (developed by Ma et al.) requires a tab-limited data matrix as
input file, with some special requirements (see details below). This function takes an object of
ExpressionSet and outputs the file.

Usage

writeQubicInputFile(x, file = "", featureNames, sampleNames)

Arguments

x An object inheriting the eSet class, most commonly an ExpressionSet
object, representing expression data of features across samples.

file Filename to output, or a connection to write to (e.g. stdout()).

featureNames Specifies the feature names. It can be left blank, in which case the result of call-
ing featureNames on x will be used. Alternatively, it can be one character
string, specifying which column in the fData should be used. The third pos-
sibility, it can be a vector of characters, with the same length as features in the
object. In the last option, all other types will be converted to characters.

http://csbl.bmb.uga.edu/~maqin/bicluster/

12 writeQubicInputFile

sampleNames Specifies the sample names. It can be left blank, in which case the result of
calling sampleNames on x will be used. Alternatively, it can be one character
string, specifying which column in the pData should be used. The third pos-
sibility, it can be a vector of characters, with the same length as features in the
object. In the last option, all other types will be converted to characters.

Details

The description of the data format can be checked by running the QUBIC tool in the command line
mode, with the option -h (for help). A special requirement, which makes it different from the results
of the write.table function in R, is that before the sample names (column names), an “o” must
be added.

Value

No visible value will be returned, the function is called for its side effect.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

eSetDimName, write.table

Examples

tmpfile <- tempfile()
data(sample.ExpressionSet)
sub.eset <- sample.ExpressionSet[1:3, 1:3]

write to standard output
writeQubicInputFile(sub.eset)

write to a temporary file
writeQubicInputFile(sub.eset, tmpfile)
head(readLines(tmpfile))

specify names with one column name in fData/pData
writeQubicInputFile(sub.eset, file="", sampleNames="sex")

alternatively specifiy names manually
writeQubicInputFile(sub.eset, file="",sampleNames=paste("Sample", 1:3))

Index

∗Topic classes
QUBICBiclusterSet-class, 1

∗Topic methods
features-methods, 6

∗Topic package
rqubic-package, 10

[,QUBICBiclusterSet,ANY,missing,missing-method
(QUBICBiclusterSet-class),
1

BCconditionCount, 6
BCconditionCount

(features-methods), 6
BCconditionCount,QUBICBiclusterSet,ANY-method

(features-methods), 6
BCconditionCount,QUBICBiclusterSet,missing-method

(features-methods), 6
BCconditions (features-methods), 6
BCconditions,QUBICBiclusterSet,ANY-method

(features-methods), 6
BCconditions,QUBICBiclusterSet,missing-method

(features-methods), 6
BCcount

(QUBICBiclusterSet-class),
1

BCcount,QUBICBiclusterSet-method
(QUBICBiclusterSet-class),
1

BCfeatureCount, 6
BCfeatureCount

(features-methods), 6
BCfeatureCount,QUBICBiclusterSet,ANY-method

(features-methods), 6
BCfeatureCount,QUBICBiclusterSet,missing-method

(features-methods), 6
BCfeatures (features-methods), 6
BCfeatures,QUBICBiclusterSet,ANY-method

(features-methods), 6
BCfeatures,QUBICBiclusterSet,missing-method

(features-methods), 6
Biclust, 1, 2

conditionCount
(features-methods), 6

conditionCount,QUBICBicluster-method
(features-methods), 6

conditionCount,QUBICBiclusterSet-method
(features-methods), 6

conditionCount-methods
(features-methods), 6

conditions, 2, 6
conditions (features-methods), 6
conditions,QUBICBiclusterSet-method

(features-methods), 6
conditions-methods

(features-methods), 6

eSet, 2, 4, 7, 11
eSetDimName, 4, 12
ExpressionSet, 4, 7, 11

fData, 4, 5, 11
featureCount (features-methods), 6
featureCount,QUBICBicluster-method

(features-methods), 6
featureCount,QUBICBiclusterSet-method

(features-methods), 6
featureCount-methods

(features-methods), 6
featureNames, 4–6, 11
featureNames,QUBICBiclusterSet-method

(features-methods), 6
features, 2, 6
features (features-methods), 6
features,QUBICBiclusterSet-method

(features-methods), 6
features-methods, 6

generateSeeds, 10
generateSeeds

(generateSeeds-methods), 7
generateSeeds,eSet-method

(generateSeeds-methods), 7
generateSeeds,matrix-method

(generateSeeds-methods), 7
generateSeeds-methods, 7

info (QUBICBiclusterSet-class), 1

13

14 INDEX

info,Biclust,ANY-method
(QUBICBiclusterSet-class),
1

info,Biclust,missing-method
(QUBICBiclusterSet-class),
1

NumberxCol
(QUBICBiclusterSet-class),
1

NumberxCol,Biclust-method
(QUBICBiclusterSet-class),
1

parameter
(QUBICBiclusterSet-class),
1

parameter,Biclust,character-method
(QUBICBiclusterSet-class),
1

parameter,Biclust,missing-method
(QUBICBiclusterSet-class),
1

parseQubicBlocks, 8
parseQubicChars, 4
parseQubicChars

(parseQubicBlocks), 8
parseQubicRules

(parseQubicBlocks), 8
pData, 4, 5, 12

quantileDiscretize, 2, 10
quantileDiscretize,eSet-method

(quantileDiscretize), 2
quantileDiscretize,matrix-method

(quantileDiscretize), 2
quantileDiscretize-methods

(quantileDiscretize), 2
QUBICBiclusterSet, 6, 8
QUBICBiclusterSet-class, 10
QUBICBiclusterSet-class, 1
quBicluster, 9

read.csv, 8
RowxNumber

(QUBICBiclusterSet-class),
1

RowxNumber,Biclust-method
(QUBICBiclusterSet-class),
1

rqubic (rqubic-package), 10
rqubic-package, 10

sampleNames, 4–6, 12

sampleNames,QUBICBiclusterSet-method
(features-methods), 6

show,QUBICBiclusterSet-method
(QUBICBiclusterSet-class),
1

showClass, 1
Svalue (QUBICBiclusterSet-class),

1
Svalue,eSet,missing-method

(QUBICBiclusterSet-class),
1

Svalue,matrix,missing-method
(QUBICBiclusterSet-class),
1

Svalue,QUBICBiclusterSet,ANY-method
(QUBICBiclusterSet-class),
1

Svalue,QUBICBiclusterSet,missing-method
(QUBICBiclusterSet-class),
1

write.table, 12
writeQubicInputFile, 5, 11

	QUBICBiclusterSet-class
	quantileDiscretize
	eSetDimName
	features-methods
	generateSeeds-methods
	parseQubicBlocks
	quBicluster
	rqubic-package
	writeQubicInputFile
	Index

