
VariantAnnotation
March 24, 2012

MatrixToSnpMatrix Convert a matrix of genotype calls to a SnpMatrix object

Description

Convert a matrix of genotype calls of format "x/x" to a SnpMatrix object.

Usage

MatrixToSnpMatrix(callMatrix, ...)

Arguments

callMatrix A matrix of genotype calls to be converted to a SnpMatrix. The columns of
the matrix should be samples and the rows the snps. The format of the calls
is expected to be character of the form "x/x" where "x" is an integer value
representing the major (reference) or minor (other) allele. Typically values will
be 0 = major, 1 = minor.

... Additional arguments, passed to methods.

Details

MatrixToSnpMatrix converts genotype calls of the form "x/x" to a SnpMatrix object. Values
of "x" are expected to be integers >= 0. The calls are converted to values consistant with SnpMatrix
where 0 = missing, 1 = homozygous major, 2 = heterozygous and 3 = homozygous minor.

Value

The object returned is a SnpMatrix where the columns are snps and the rows are samples. See the
help page for SnpMatrix for complete details of the class structure.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

SnpMatrix

1

2 PolyPhenDb-class

Examples

import vcf file to SummarizedExperiment
vcfFile <- system.file("extdata", "ex1.vcf", package="VariantAnnotation")
se <- readVcf(vcfFile)

genotype calls are stored in the assays slot
assays(se)
calls <- assays(se)$GT
snps <- MatrixToSnpMatrix(calls)

PolyPhenDb-class PolyPhenDb objects

Description

The PolyPhenDb class is a container for storing a connection to a PolyPhen sqlite database.

Details

PolyPhen (Polymorphism Phenotyping) is a tool which predicts the possible impact of an amino
acid substitution on the structure and function of a human protein by applying empirical rules to the
sequence, phylogenetic and structural information characterizing the substitution.

PolyPhen makes its predictions using UniProt features, PSIC profiles scores derived from multiple
alignment and matches to PDP or PQS structural databases. The procedure can be roughly outlined
in the following steps, see the references for complete details,

• sequence-based characterization of substitution site

• calculation of PSIC profile scores for two amino acid variants

• calculation of structural parameters and contacts

• prediction

PolyPhen uses empirically derived rules to predict that a non-synonymous SNP is

• probably damaging : it is with high confidence supposed to affect protein function or structure

• possibly damaging : it is supposed to affect protein function or structure

• benign : most likely lacking any phenotypic effect

• unknown : when in some rare cases, the lack of data do not allow PolyPhen to make a predic-
tion

Methods

In the code below, x is a PolyPhenDb object.

metadata(x): Returns x’s metadata in a data frame.

cols(x): Returns the names of the cols that can be used to subset the data columns. For
column descriptions see ?PolyPhenDbColumns.

keys(x): Returns the names of the keys that can be used to subset the data rows. The keys
values are the rsid’s.

PolyPhenDb-class 3

select(x, keys = NULL, cols = NULL, ...): Returns a subset of data defined by
the character vectors keys and cols. If no keys are supplied, all rows are returned. If
no cols are supplied, all columns are returned. See ?PolyPhenDbColumns for column
descriptions.

duplicateRSID(x): Returns a named list of duplicate rsid groups. The names are the keys,
the list elements are the rsid’s that have been reported as having identical chromosome position
and alleles and therefore translating into the same amino acid residue substitution.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

References

PolyPhen Home: http://genetics.bwh.harvard.edu/pph2/dokuwiki/

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sun-
yaev SR. Nat Methods 7(4):248-249 (2010).

Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids
Res 30(17):3894-3900 (2002).

Sunyaev SR, Eisenhaber F, Rodchenkov IV, Eisenhaber B, Tumanyan VG, Kuznetsov EN. PSIC:
profile extraction from sequence alignments with position-specific counts of independent observa-
tions. Protein Eng 12(5):387-394 (1999).

See Also

?PolyPhenDbColumns

Examples

library(PolyPhen.Hsapiens.dbSNP131)

metadata
metadata(PolyPhen.Hsapiens.dbSNP131)

available rsid's
head(keys(PolyPhen.Hsapiens.dbSNP131))

column descriptions found at ?PolyPhenDbColumns
cols(PolyPhen.Hsapiens.dbSNP131)

subset on keys and cols
subst <- c("AA1", "AA2", "PREDICTION")
rsids <- c("rs2142947", "rs4995127", "rs3026284")
select(PolyPhen.Hsapiens.dbSNP131, keys=rsids, cols=subst)

retrieve substitution scores
subst <- c("IDPMAX", "IDPSNP", "IDQMIN")
select(PolyPhen.Hsapiens.dbSNP131, keys=rsids, cols=subst)

retrieve the PolyPhen-2 classifiers
subst <- c("PPH2CLASS", "PPH2PROB", "PPH2FPR", "PPH2TPR", "PPH2FDR")
select(PolyPhen.Hsapiens.dbSNP131, keys=rsids, cols=subst)

duplicate groups of rsid's

http://genetics.bwh.harvard.edu/pph2/dokuwiki/

4 PolyPhenDbColumns

duplicateRSID(PolyPhen.Hsapiens.dbSNP131, c("rs71225486", "rs1063796"))

PolyPhenDbColumns PolyPhenDb Columns

Description

Description of the PolyPhen Sqlite Database Columns

Column descriptions

These column names are displayed when cols is called on a PolyPhenDb object.

• rsid : rsid

Original query :

• OSNPID : original SNP identifier from user input

• OSNPACC : original protein identifier from user input

• OPOS : original substitution position in the protein sequence from user input

• OAA1 : original wild type (reference) aa residue from user input

• OAA2 : original mutant (reference) aa residue from user input

Mapped query :

• SNPID : SNP identifier mapped to dbSNP rsID if available, otherwise same as o_snp_id. This
value was used as the rsid column

• ACC : protein UniProtKB accession if known protein, otherwise same as o_acc

• POS : substitution position mapped to UniProtKB protein sequence if known, otherwise same
as o_pos

• AA1 : wild type aa residue

• AA2 : mutant aa residue

• NT1 : wild type allele nucleotide

• NT2 : mutant allele nucleotide

PolyPhen-2 prediction :

• PREDICTION : qualitative ternary classification FPR thresholds

PolyPhen-1 prediction :

• BASEDON : prediction basis

• EFFECT : predicted substitution effect on the protein structure or function

PolyPhen-2 classifiers :

• PPH2CLASS : binary classifier outcome ("damaging" or "neutral")

• PPH2PROB : probability of the variation being dammaging

• PPH2FPR : false positive rate at the pph2_prob level

PolyPhenDbColumns 5

• PPH2TPR : true positive rate at the pph2_prob level

• PPH2FDR : false discovery rate at the pph2_prob level

UniProtKB-SwissProt derived protein sequence annotations :

• SITE : substitution SITE annotation

• REGION : substitution REGION annotation

• PHAT : PHAT matrix element for substitution in the TRANSMEM region

Multiple sequence alignment scores :

• DSCORE : difference of PSIC scores for two aa variants (Score1 - Score2)

• SCORE1 : PSIC score for wild type aa residue (aa1)

• SCORE2 : PSIC score for mutant aa residue (aa2)

• NOBS : number of residues observed at the substitution position in the multiple alignment
(sans gaps)

Protein 3D structure features :

• NSTRUCT : initial number of BLAST hits to similar proteins with 3D structures in PDB

• NFILT : number of 3D BLAST hits after identity threshold filtering

• PDBID : protein structure identifier from PDB

• PDBPOS : position of substitution in PDB protein sequence

• PDBCH : PDB polypeptide chain identifier

• IDENT : sequence identity between query and aligned PDB sequences

• LENGTH : PDB sequence alignment length

• NORMACC : normalized accessible surface

• SECSTR : DSSP secondary structure assignment

• MAPREG : region of the phi-psi (Ramachandran) map derived from the residue dihedral an-
gles

• DVOL : change in residue side chain volume

• DPROP : change in solvent accessible surface propensity resulting from the substitution

• BFACT : normalized B-factor (temperature factor) for the residue

• HBONDS : number of hydrogen sidechain-sidechain and sidechain-mainchain bonds formed
by the residue

• AVENHET : average number of contacts with heteroatoms per residue

• MINDHET : closest contact with heteroatom

• AVENINT : average number of contacts with other chains per residue

• MINDINT : closest contact with other chain

• AVENSIT : average number of contacts with critical sites per residue

• MINDSIT : closest contact with a critical site

Nucleotide sequence features (CpG/codon/exon junction) :

• TRANSV : whether substitution is a transversion

• CODPOS : position of the substitution within the codon

• CPG : whether or not the substitution changes CpG context

6 SIFTDb-class

• MINDJNC : substitution distance from exon/intron junction

Pfam protein family :

• PFAMHIT : Pfam identifier of the query protein

Substitution scores :

• IDPMAX : maximum congruency of the mutant aa residue to all sequences in multiple align-
ment

• IDPSNP : maximum congruency of the mutant aa residue to the sequence in alignment with
the mutant residue

• IDQMIN : query sequence identity with the closest homologue deviating from the wild type
aa residue

Comments :

• COMMENTS : Optional user comments

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

?PolyPhenDb

SIFTDb-class SIFTDb objects

Description

The SIFTDb class is a container for storing a connection to a SIFT sqlite database.

Details

SIFT is a sequence homology-based tool that sorts intolerant from tolerant amino acid substitutions
and predicts whether an amino acid substitution in a protein will have a phenotypic effect. SIFT
is based on the premise that protein evolution is correlated with protein function. Positions impor-
tant for function should be conserved in an alignment of the protein family, whereas unimportant
positions should appear diverse in an alignment.

SIFT uses multiple alignment information to predict tolerated and deleterious substitutions for every
position of the query sequence. The procedure can be outlined in the following steps,

• search for similar sequences

• choose closely related sequences that may share similar function to the query sequence

• obtain the alignment of the chosen sequences

• calculate normalized probabilities for all possible substitutions from the alignment.

Positions with normalized probabilities less than 0.05 are predicted to be deleterious, those greater
than or equal to 0.05 are predicted to be tolerated.

SIFTDb-class 7

Methods

In the code below, x is a SIFTDb object.

metadata(x): Returns x’s metadata in a data frame.

cols(x): Returns the names of the cols that can be used to subset the data columns.

keys(x): Returns the names of the keys that can be used to subset the data rows. The keys
values are the rsid’s.

select(x, keys = NULL, cols = NULL, ...): Returns a subset of data defined by
the character vectors keys and cols. If no keys are supplied, all rows are returned. If no
cols are supplied, all columns are returned. For column descriptions see ?SIFTDbColumns.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

References

SIFT Home: http://sift.jcvi.org/

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein
function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-81

Ng PC, Henikoff S. Predicting the Effects of Amino Acid Substitutions on Protein Function Annu
Rev Genomics Hum Genet. 2006;7:61-80.

Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids
Res. 2003 Jul 1;31(13):3812-4.

Examples

library(SIFT.Hsapiens.dbSNP132)

metadata
metadata(SIFT.Hsapiens.dbSNP132)

available rsid's
head(keys(SIFT.Hsapiens.dbSNP132))

for column descriptions see ?SIFTDbColumns
cols(SIFT.Hsapiens.dbSNP132)

subset on keys and cols
rsids <- c("rs2142947", "rs17970171", "rs8692231", "rs3026284")
subst <- c("RSID", "PREDICTION", "SCORE")
select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)
select(SIFT.Hsapiens.dbSNP132, keys=rsids[1:2])

http://sift.jcvi.org/

8 SIFTDbColumns

SIFTDbColumns SIFTDb Columns

Description

Description of the SIFT Sqlite Database Columns

Column descriptions

These column names are displayed when cols is called on a SIFTDb object.

• RSID : rsid

• PROTEINID : NCBI RefSeq protein ID

• AACHANGE : amino acid substitution; reference aa is preceeding, followed by the position
and finally the snp aa

• METHOD : method of obtaining related sequences using PSI-BLAST

• AA : either the reference or snp residue amino acid

• PREDICTION : SIFT prediction

• SCORE : SIFT score (range 0 to 1)

– TOLERATED : score is greater than 0.05

– DAMAGING : score is less than or equal to 0.05

– NOT SCORED : no prediction is made if there are less than 2 homologous sequences
that have an amino acid at the position of the given SNP or if the SIFT prediction is not
available

• MEDIAN : diversity measurement of the sequences used for prediction (range 0 to 4.32)

• POSITIONSEQS : number of sequences with an amino acide at the position of prediction

• TOTALSEQS : total number of sequences in alignment

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

?SIFTDb

VAFilter-class 9

VAFilter-class "VAFilter" for representing functions operating on genetic variants

Description

Objects of this class are functions that operate on GRanges objects containing genetic variants.
They return logical vectors indicating which parts of the object satisfy the filter criterion and statis-
tics describing the number of records that passed the filter.

Objects from the Class

Objects are created through calls to constructors for predefined filters, as described on the vaFilter
page.

Slots

.Data: Object of class "function" taking a single named argument x corresponding to the
GRanges object that the filter will be applied to. The return value of the filter function is
expected to be a logical vector that can be used to subset x to include those elements of x
satisfying the filter.

name: Object of class "ScalarCharacter" representing the name of the filter. The name is
useful for suggesting the purpose of the filter, and for debugging failed filters.

Methods

vaFilter signature(fun = "VAFilter"): Return the function representing the underlying
filter; this is primarily for interactive use to understanding filter function; usually the filter is
invoked as a normal function call

name signature(x = "VAFilter"): Return, as a ScalarCharacter, the name of the
function.

show signature(object = "VAFilter"): display a brief summary of the filter

Author(s)

Valerie Obenchain

See Also

vaFilter for predefined filters.

Examples

see ?vaFilter

10 VAFilterResult-class

VAFilterResult-class
"VAFilterResult" for VAFilter output and statistics

Description

Objects of this class are logical vectors indicating records passing the applied filter, with an associ-
ated data frame summarizing the name, input number of records, records passing filter, and logical
operation used for all filters in which the result participated.

Usage

VAFilterResult(data = GRanges(), x = logical(), name = NA_character_,
subset = TRUE, input = length(x), passing = sum(x), op = NA_character_)

S4 method for signature 'VAFilterResult,VAFilterResult'
Logic(e1, e2)
S4 method for signature 'VAFilterResult'
name(x, ...)
stats(x, ...)
S4 method for signature 'VAFilterResult'
show(object)

Arguments

data A linkS4class{GRanges} of the data to be filtered.
x, object, e1, e2

For VAFilterResult, logical() indicating records that passed filter or,
for others, an instance of VAFilterResult class.

name character() indicating the name by which the filter is to be referred. In-
ternally, name, input, passing, and op may all be vectors representing
columns of a data.frame summarizing the application of successive filters.

subset logical() when TRUE, the function returns a subset of the data that passed
the filter as a linkS4class{GRanges} object. The name and stats infor-
mation are in the metadata slot. When FALSE, an object of VAFilterResult
is returned.

input integer() indicating the length of the original input.

passing integer() indicating the number of records passing the filter.

op character() indicating the logical operation, if any, associated with this
filter.

... Additional arguments, unused in methods documented on this page.

Objects from the Class

Objects can be created through VAFilterResult, but these are automatically created by the
application of vaFilter instances.

VAUtil-class 11

Slots

.Data: Object of class "logical" indicating records that passed the filter.

name: Object of class "ScalarCharacter" representing the name of the filter whose results
are summarized. The name is either the actual name of the filter, or a combination of filter
names and logical operations when the outcome results from application of several filters in a
single logical expression.

stats: Object of class "data.frame" summarizing the name, input number of records, records
passing filter, and logical operation used for all filters in which the result participated. The
data.frame rows correspond either to single filters, or to logical combinations of filters.

Methods

Logic signature(e1 = "VAFilterResult", e2 = "VAFilterResult"): logic op-
erations on filters.

! signature(x = "VAFilterResult"): Negate the outcome of the current filter results

name signature(x = "VAFilterResult"): The name of the filter that the results are
based on.

stats signature(x = "VAFilterResult"): a data.frame as described in the ‘Slots’
section of this page.

show signature(object = "VAFilterResult"): summary of filter results.

Author(s)

Valerie Obenchain

See Also

vaFilter

Examples

see ?vaFilter

VAUtil-class ".VAUtil" and potentially other related classes - in progress

Description

These classes provide important utility functions in the VariantAnnotation package, but may oc-
casionally be seen by the user and are documented here for that reason.

Objects from the Class

Utility classes include:

• .VAUtil-class a virtual base class from which all utility classes are derived.

Author(s)

Valerie Obenchain

12 getTranscriptSeqs

Examples

getClass(".VAUtil", where=getNamespace("VariantAnnotation"))

getTranscriptSeqs Get transcript sequences

Description

Extract transcript sequences from a BSgenome object or an FaFile.

Usage

S4 method for signature 'GRangesList,BSgenome'
getTranscriptSeqs(query, subject, ...)

S4 method for signature 'GRangesList,FaFile'
getTranscriptSeqs(query, subject, ...)

S4 method for signature 'GRanges,FaFile'
getTranscriptSeqs(query, subject, ...)

Arguments

query A GRangesList object containing exons or cds grouped by transcript.

subject A BSgenome object or a FaFile from which the sequences will be taken.

... Additional arguments

Details

getTranscriptSeqs is a wrapper for the extractTranscriptsFromGenome and getSeq
functions. The purpose is to allow sequence extraction from either a BSgenome or FaFile. Tran-
script sequences are extracted based on the boundaries of the feature provided in the query (i.e.,
either exons or cds regions).

Value

A DNAStringSet instance containing the sequences for all transcripts specified in query.

Author(s)

Valerie Obenchain

See Also

predictCoding extractTranscriptsFromGenome getSeq

globalToLocal 13

Examples

library(TxDb.Hsapiens.UCSC.hg18.knownGene)
library(BSgenome.Hsapiens.UCSC.hg18)

txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene
cdsByTx <- cdsBy(txdb)
chr20 <- keepSeqlevels(cdsByTx, "chr20")

BSgenome as sequence source
bsSource <- getTranscriptSeqs(chr20, Hsapiens)

FASTA files as sequence source
FIXME : get sample FASTA
#fafile <- FaFile(pathToFastaFile)
#faSource <- getTranscriptSeqs(chr20, fafile)

identical(bsSource, faSource)

globalToLocal globalToLocal

Description

Converts reference-based (aka chromosome-based or genomic) locations into transcript-based lo-
cations

Usage

globalToLocal(global, ranges)

Arguments

global A GRanges object

ranges A GRangesList object

Details

This function translates coordinates from a reference location specified in global to the transcript
location as defined in ranges.

Value

A DataFrame with three columns of ’global.ind’, ranges.ind’ and ’local’. ’global.ind’ and ’ranges.ind’
are the indices of the global and ranges input arguments, respectively. The ’local’ column con-
tains the range coordinates of the elements in global translated with respect to the ranges in
’ranges.ind’.

Author(s)

Michael Lawrence

14 locateVariants

See Also

getTranscriptSeqs transcriptLocs2refLocs extractTranscriptsFromGenome

Examples

under construction

#library(BSgenome.Hsapiens.UCSC.hg19)
#library(TxDb.Hsapiens.UCSC.hg19.knownGene)
#
snps from dbsnp132
#snvs <- GRanges(seqnames=c("chr6", "chr10", "chr16"),
#ranges = IRanges(start=c(88375601, 115912481, 69875501), width=c(1,2,2)))
#
#txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
#genes <- transcriptsBy(txdb, "gene")
#rgs <- reduce(genes[subjectHits(fo),])
#fo <- findOverlaps(snps, rgs)
#txseqs <- extractTranscriptsFromGenome(Hsapiens, rgs)
#
#txLocal <- globalToLocal(snvs, rgs[subjectHits(fo),])
#
retrieve reference sequences
reference coordinates
#rlocs <- transcriptLocs2refLocs(tlocs, start(exbytx), end(exbytx),
tx_strand, reorder.exons.on.minus.strand=TRUE)
#
subject <- subject[unique(subjectHits(fo))]
txSeqs <- getTranscriptSeqs(subject, seqSource)
xCoding <- query[txLocal$globalInd]
#
back to reference coordinates

locateVariants Locate variants

Description

Identify variant location with respect to gene functionality

Usage

locateVariants(query, subject, ...)
S4 method for signature 'GRanges,TranscriptDb'

locateVariants(query, subject, ...)

Arguments

query A GRanges object containing the variants

subject A TranscriptDb object that will serve as the annotation reference

... Additional arguments passed to methods

predictCoding 15

Details

Range representation :

locateVariants accepts a GRanges object that contains the variants of interest. The range
should reflect the positions of the reference basepairs being substituted or deleted. The width will
be the same as the number of basepairs being substituted or deleted. For insertions, the width is
negative and the range is represented as start = end + 1. For examples of how different variant
types should be represented see the variants sample data in the package.

Location :

Variant positions are overlaped with feature ranges of the TranscriptDb object. Possible loca-
tions include coding, intron, 3UTR, 5UTR, intergenic or unknown. Intergenic variants are those
that do not match (i.e., overlap with) a transcript. Currently all findOverlaps operations in
locateVariants are performed with type = ‘within’. This requires that the variant fall com-
pletely within one of the defined regions or else it is classified as ‘unknown’.

Value

A DataFrame is returned with columns of queryHits, txID, geneID and Location. queryHits
is a map back to the original variants from the query. The txID and geneID values come from
the TranscriptDb object. For intergenic variants, the geneID contains identifiers for genes on ei-
ther side of the variant (preceding and following). Each row in the result represents a transcript hit
by a variant. When a variant hits multiple transcripts there will be multiple rows for that variant.

Author(s)

Valerie Obenchain

See Also

predictCoding

Examples

library(TxDb.Hsapiens.UCSC.hg18.knownGene)
library(BSgenome.Hsapiens.UCSC.hg18)
data(variants)

txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene
loc <- locateVariants(variants, txdb)

predictCoding Predict amino acid coding changes for variants

Description

Predict amino acid coding changes for variants that fall in a coding region.

Usage

S4 method for signature 'GRanges,GRangesList,ANY,character'
predictCoding(query, subject,

seqSource, varAllele, ...)

16 predictCoding

Arguments

query A Ranges or GRanges instance containing the variants to be annotated. If a
Ranges instance is provided it will be coerced to a GRanges.

subject A GRangesList or a TranscriptDb instance.
When subject is provided as a GRangesList it is assumed that it was created
with the ’cdsBy’ function on a TranscriptDb. If subject is a TranscriptDb,
the coding regions will be identified using the ’cdsBy’ function on this object.

seqSource A BSgenome instance or an FaFile to be used for sequence extraction.

varAllele A character representing the name of the column in query that contains the
variant alleles. The data in the column should be a DNAStringSet. Insertions
and deletions are represented by a missing value.

... Additional arguments

Details

Reference sequences are extracted from fasta files or a BSgenome based on the ranges specified in
the query. Variant alleles provided in the varAllele argument are substituted into the reference
sequences and transcribed. Variant sequences are transcribed only if the substitution, insertion or
deletion results in a new sequence length divisible by 3.

Value

A DataFrame of variants that fall within a coding region. Each row represents a variant-transcript
match. If a variant matched multiple transcripts, multiple rows are returned for the variant.

Columns include queryHits, txID, refSeq, varSeq, refAA, varAA, Consequence, and
any metadata that was present in the subject. queryHits provides a map to the variants in
the original query. refSeq and varSeq contain the reference and variant-modified DNA se-
quences. Reference and variant amino acid codes are provided in refAA and varAA. Variant
sequences are transcribed only if the substitution, insertion or deletion results in a new sequence
length divisible by 3. When a sequence is not transcribed the varAA column is empty and the vari-
ant is classified as a frameshift in the Consequence column. Possible values for Consequence
are synonymous, nonsynonymous, or frameshift. See the vignette for more details.

Author(s)

Michael Lawrence and Valerie Obenchain

See Also

locateVariants getTranscriptSeqs

Examples

library(TxDb.Hsapiens.UCSC.hg18.knownGene)
library(BSgenome.Hsapiens.UCSC.hg18)

data(variants)
txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene
aaCoding <- predictCoding(variants, txdb, seqSource=Hsapiens,

varAllele="varAllele")

TODO : example for fasta

readVcf 17

readVcf Read VCF (variant call format) files into a SummarizedExperiment
object

Description

Read VCF files into a SummarizedExperiment object

Usage

S4 method for signature 'character,ANY'
readVcf(file, ..., param)
S4 method for signature 'character,missing'
readVcf(file, ..., param)
S4 method for signature 'TabixFile,GRanges'
readVcf(file, ..., param)
S4 method for signature 'TabixFile,RangedData'
readVcf(file, ..., param)
S4 method for signature 'TabixFile,RangesList'
readVcf(file, ..., param)
S4 method for signature 'TabixFile,ScanVcfParam'
readVcf(file, ..., param)
S4 method for signature 'TabixFile,missing'
readVcf(file, ..., param)

Arguments

file The character() file name(s) of the VCF file to be processed, or an instance of
class TabixFile.

param A instance of GRanges, RangedData, RangesList, or ScanVcfParam
providing the sequence names and regions to be parsed.

... Additional arguments, passed to methods.

Details

readVcf imports records from a VCF file into a SummarizedExperiment object. The param
argument can be used to select a subset of records when reading from compressed (bgzip) VCF files.

The function calls Rsamtools scanVcf, the details of which can be found with ?scanVcf.

Value

The object returned is a SummarizedExperiment. See the help page for SummarizedExperiment
for complete details of the class structure.

The rowData slot contains a GRanges instance with metadata columns of QUAL (phred-scaled
quality for the assertion made in ALT), FILTER (pass if position passed all filters), INFO (additional
information), REF (reference base(s)), and ALT (alternate non-reference alleles called on at least
one of the samples) fields in the VCF file. The row names of the GRanges object are the ID values
from the VCF file if they exist. See references for complete details of the VCF file format. The
ranges in the rowData reflect the range of the REF alleles.

18 readVcf

The assays slot is a list the same length as the number of fields in the FORMAT column of the
VCF file. Each list element is a matrix of data from the GENO field where there is a row for each
variant and a column for each sample.

The colData slot contains a DataFrame describing the samples. If present, the sample names
(i.e., the names following GENO in the VCF file), become the row names.

The exptData slot contains a SimpleList with the VCF file header information.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

References

http://vcftools.sourceforge.net/specs.html outlines the VCF specification.

http://samtools.sourceforge.net/mpileup.shtml contains information on the por-
tion of the specification implemented by bcftools.

http://samtools.sourceforge.net/ provides information on samtools.

See Also

indexTabix TabixFile scanTabix scanBcf

Examples

read all records of VCF into a SummarizedExperiment
vcfFile <- system.file("extdata", "ex1.vcf", package="VariantAnnotation")
vcf <- readVcf(vcfFile)
names(assays(vcf))

compress on the fly and read a subset of data
rngs <- GRanges(seqnames="1", ranges=IRanges(start=0, end=100000))
compressVcf <- bgzip(vcfFile, tempfile())
idx <- indexTabix(compressVcf, "vcf")
tab <- TabixFile(compressVcf, idx)
vcf <- readVcf(tab, param=rngs)

VCF header information
vcf
exptData(vcf)[["HEADER"]]
exptData(vcf)[["HEADER"]][["META"]]

the 8 required VCF fields are parsed into the rowData slot
exptData(vcf)[["HEADER"]][["FILTER"]]
exptData(vcf)[["HEADER"]][["INFO"]]
rowData(vcf)

genotype data described in FORMAT are parsed into the assays slot
exptData(vcf)[["HEADER"]][["FORMAT"]]
assays(vcf)
head(assays(vcf)$GT)

http://vcftools.sourceforge.net/specs.html
http://samtools.sourceforge.net/mpileup.shtml
http://samtools.sourceforge.net/

vaFilter 19

vaFilter Functions for VariantAnnotation filters

Description

These functions create instances of VAFilter objects. Filters can be applied to genomic vari-
ants in a GRanges object. The object returned contains a logical vector indicating which records
satisfied the filter and stats on how many elements satisfied the filter.

Usage

vaFilter(fun, name = NA_character_, ...)
S4 method for signature 'missing'
vaFilter(fun, name=NA_character_, ...)
S4 method for signature 'function'
vaFilter(fun, name=NA_character_, ...)

compose(filt, ..., .name)

dbSNPFilter(dbSNP=character(0), .name="dbSNPFilter")
regionFilter(txdb, region="coding", .name="regionFilter")

Arguments

fun An object of class function to be used as a filter. fun must accept a sin-
gle named argument x, and is expected to return a logical vector such that
x[fun(x)] selects only those elements of x satisfying the conditions of fun

name A character(1) object to be used as the name of the filter. The name is
useful for debugging and reference.

filt A VAFilter object, to be used with additional arguments to create a composite
filter.

.name An optional character(1) object used to over-ride the name applied to de-
fault filters.

dbSNP The character(0) name of the dbSNP package to be used. The default
(character(0)) performs no filtering

txdb The TranscriptDb object used to identifying gene regions.

region A character(1) object specifying the region on which to filter the results.
Possible values are "coding", "intron", "3UTR", "5UTR" and "intergenic".

... Additional arguments

Details

vaFilter allows users to construct their own filters. The fun argument to vaFilter must be
a function accepting a single argument x and returning a logical vector indicating which records
passed the filter.

The signature(fun="missing") method creates a default filter that returns a vector of
TRUE values with length equal to length(x).

20 variants

compose constructs a new filter from one or more existing filter. The result is a filter that returns
a logical vector with indices corresponding to components of x that pass all filters. If not provided,
the name of the filter consists of the names of all component filters, each separated by " o ".

The remaining functions documented on this page are built-in filters that accept arguments x,
subset=TRUE and return a logical vector of length(x) indicating which components of x
satisfy the filter.

dbSNPFilter selects elements present in the specified dbSNP package

regionFilter selects elements present in the region specified.

Value

vaFilter returns an object of VAFilter.

Filters return a logical vector of length(x), with TRUE indicating components that pass the filter.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

See Also

VAFilter

Examples

data(variants)

variants present in dbSNP
snpFilt <- dbSNPFilter("SNPlocs.Hsapiens.dbSNP.20090506")
subset of variants that passed the filter
snpFilt(variants)
VAFilterResult with logical vector indicating which variants passed the filter
snpFilt(variants, subset=FALSE)

variants present in coding regions
library(TxDb.Hsapiens.UCSC.hg18.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene
regionFilt <- regionFilter(txdb, region="coding")
regionFilt(variants, subset=FALSE)

subset of variants that passed both filters
comboFilt <- compose(snpFilt, regionFilt)
comboFilt(variants)

variants Human genetic variant test dataset

Description

This dataset contains sample Human genetic variants from the ANNOVAR web site and fabricated
variants.

variants 21

Usage

data(variants)

Format

The dataset is an object of class GRanges with Human variants from build hg18. Some of the
varaints come from the ANNOVAR web site and some are fabricated for example purposes.

Information for each variant includes chromosome, range, strand, reference and observed allele,
and a comment.

Source

ANNOVAR web site : http://www.openbioinformatics.org/annovar/

References

Wang K., Li M, and Hakonarson H. (2010), “ANNOVAR: functional annotation of genetic variants
from high-throughput sequencing data”. Nucleic Acids Research, Vol. 38, No. 16, e164.

Examples

data(variants)
variants

http://www.openbioinformatics.org/annovar/

Index

!,VAFilterResult-method
(VAFilterResult-class), 10

∗Topic classes
PolyPhenDb-class, 2
PolyPhenDbColumns, 4
SIFTDb-class, 6
SIFTDbColumns, 8
VAFilter-class, 9
VAFilterResult-class, 10
VAUtil-class, 11

∗Topic datasets
variants, 20

∗Topic manip
getTranscriptSeqs, 12
globalToLocal, 13
MatrixToSnpMatrix, 1
readVcf, 17
vaFilter, 19

∗Topic methods
getTranscriptSeqs, 12
locateVariants, 14
PolyPhenDb-class, 2
PolyPhenDbColumns, 4
predictCoding, 15
SIFTDb-class, 6
SIFTDbColumns, 8

.VAUtil-class (VAUtil-class), 11

BSgenome, 12, 16

c,VAFilter-method
(VAFilter-class), 9

class:PolyPhenDb
(PolyPhenDb-class), 2

class:SIFTDb (SIFTDb-class), 6
coerce,VAFilter,FilterRules-method

(VAFilter-class), 9
cols,PolyPhenDb-method

(PolyPhenDb-class), 2
cols,SIFTDb-method

(SIFTDb-class), 6
compose (vaFilter), 19

DataFrame, 13, 15, 16

dbSNPFilter (vaFilter), 19
DNAStringSet, 12, 16
duplicateRSID (PolyPhenDb-class),

2

extractTranscriptsFromGenome, 12,
14

FaFile, 12, 16

getSeq, 12
getTranscriptSeqs, 12, 16
getTranscriptSeqs,GRanges,FaFile-method

(getTranscriptSeqs), 12
getTranscriptSeqs,GRangesList,BSgenome-method

(getTranscriptSeqs), 12
getTranscriptSeqs,GRangesList,FaFile-method

(getTranscriptSeqs), 12
globalToLocal, 13
GRanges, 9, 13–17, 19
GRangesList, 12, 13, 16

indexTabix, 18

keys,PolyPhenDb-method
(PolyPhenDb-class), 2

keys,SIFTDb-method
(SIFTDb-class), 6

locateVariants, 14, 16
locateVariants,GRanges,TranscriptDb-method

(locateVariants), 14
Logic,VAFilterResult,VAFilterResult-method

(VAFilterResult-class), 10

MatrixToSnpMatrix, 1
metadata,PolyPhenDb-method

(PolyPhenDb-class), 2
metadata,SIFTDb-method

(SIFTDb-class), 6

name (VAFilter-class), 9
name,VAFilter-method

(VAFilter-class), 9

22

INDEX 23

name,VAFilterResult-method
(VAFilterResult-class), 10

PolyPhen (PolyPhenDb-class), 2
PolyPhenDb (PolyPhenDb-class), 2
PolyPhenDb-class, 2
PolyPhenDbColumns, 4
predictCoding, 12, 15, 15
predictCoding,GRanges,GRangesList,ANY,character-method

(predictCoding), 15
predictCoding,GRanges,TranscriptDb,ANY,character-method

(predictCoding), 15
predictCoding,Ranges,GRangesList,ANY,character-method

(predictCoding), 15
predictCoding,Ranges,TranscriptDb,ANY,character-method

(predictCoding), 15

Ranges, 16
readVcf, 17
readVcf,character,ANY-method

(readVcf), 17
readVcf,character,missing-method

(readVcf), 17
readVcf,TabixFile,GRanges-method

(readVcf), 17
readVcf,TabixFile,missing-method

(readVcf), 17
readVcf,TabixFile,RangedData-method

(readVcf), 17
readVcf,TabixFile,RangesList-method

(readVcf), 17
readVcf,TabixFile,ScanVcfParam-method

(readVcf), 17
regionFilter (vaFilter), 19

scanBcf, 18
scanTabix, 18
scanVcf, 17
ScanVcfParam, 17
select,PolyPhenDb-method

(PolyPhenDb-class), 2
select,SIFTDb-method

(SIFTDb-class), 6
show,VAFilter-method

(VAFilter-class), 9
show,VAFilterResult-method

(VAFilterResult-class), 10
SIFT (SIFTDb-class), 6
SIFTDb (SIFTDb-class), 6
SIFTDb-class, 6
SIFTDbColumns, 8
SnpMatrix, 1
stats (VAFilterResult-class), 10

stats,VAFilterResult-method
(VAFilterResult-class), 10

SummarizedExperiment, 17

TabixFile, 17, 18
TranscriptDb, 14–16, 19
transcriptLocs2refLocs, 14

VAFilter, 19, 20
vaFilter, 9–11, 19
vaFilter,function-method

(vaFilter), 19
vaFilter,missing-method

(vaFilter), 19
vaFilter,VAFilter-method

(VAFilter-class), 9
VAFilter-class, 9
VAFilterResult, 10
VAFilterResult

(VAFilterResult-class), 10
VAFilterResult-class, 10
variants, 20
VAUtil-class, 11

	MatrixToSnpMatrix
	PolyPhenDb-class
	PolyPhenDbColumns
	SIFTDb-class
	SIFTDbColumns
	VAFilter-class
	VAFilterResult-class
	VAUtil-class
	getTranscriptSeqs
	globalToLocal
	locateVariants
	predictCoding
	readVcf
	vaFilter
	variants
	Index

