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1 Introduction

High-throughput sequencing technologies allow the production of large volumes
of short sequences, which can be aligned to the genome to create a set of matches
to the genome. By looking for regions of the genome which to which there are
high densities of matches, we can infer a segmentation of the genome into regions
of biological significance. The methods we propose allows the simultaneous
segmentation of data from multiple samples, taking into account replicate data,
in order to create a consensus segmentation. This has obvious applications in
a number of classes of sequencing experiments, particularly in the discovery of
small RNA loci and novel mRNA transcriptome discovery.

We approach the problem by considering a large set of potential segments
upon the genome and counting the number of tags that match to that segment
in multiple sequencing experiments (that may or may not contain replication).
We then adapt the empirical Bayesian methods based on the Poisson-Gamma
conjugacy and implemented in the baySeq package [1] to establish, for a given
segment, the likelihood that the count data in that segment is similar to back-
ground levels, or that it is similar to the regions to the left or right of that
segment. We then rank all the potential segments in order of increasing likeli-
hood of similarity and reject those segments for which there is a high likelihood
of similarity with the background or the regions to the left or right of the seg-
ment. This gives us a large list of overlapping segments. We reduce this list to
identify non-overlapping loci by choosing, for a set of overlapping segments, the
segment which has the lowest likelihood of similarity with either background or
the regions to the left or right of that segment and rejecting all other segments
that overlap with this segment. For fuller details of the method, see Hardcastle
(2010) [2].

2 Preparation

We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse
are usually massive, we should use (if possible) parallel processing as imple-
mented by the snow package. We therefore need to load the snow package (if it
exists) and define a cluster.
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> library(snow)

> cl <- makeCluster(7, "MPI")

If snow is not present, we can proceed anyway with a NULL cluster. Results
may be slightly different depending on whether or not a cluster is used owing
to the non-deterministic elements of the method.

> cl <- NULL

There is a convenience function, processTags which is able to read in tab-
delimited files which have appropriate column names, and create an alignmentData

object. Alternatively, if the appropriate column names are not present, we can
specify which columns to use for the data. In either case, we pass a charac-
ter vector of files, together with information on which data are to be treated as
replicates to the function. We also need to define the lengths of the chromosome
and specifiy the chromosome names as a character. The data here, drawn from
text files in the ’data’ directory of the segmentSeq package are taken from the
first million bases of an alignment to chromosome 1 and the first five hundred
thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a
sequencing experiment where libraries ’SL9’ and ’SL10’ are replicates, as are
’SL26’ and ’SL32’.

> chrlens <- c(1e+06, 5e+05)

> datadir <- system.file("extdata", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c(1, 1, 2, 2)

> aD <- processTags(libfiles, dir = datadir, replicates, libnames,

+ chrlens, chrs = c(">Chr1", ">Chr2"), header = TRUE, gap = 200)

> aD

An object of class "alignmentData"

22717 rows and 4 columns

Slot "alignments":

chr start end tag matches chunk chunkDup

9233 >Chr1 1 22 GTTTAGGGTTTAGGGTTTAGGG 2 1 TRUE

26069 >Chr1 3 21 CTAAACCCTAAACCCTAAA 2 1 TRUE

9231 >Chr1 5 19 AAACCCTAAACCCTA 2 1 TRUE

9232 >Chr1 5 20 AAACCCTAAACCCTAA 2 1 TRUE

9234 >Chr1 5 23 AAACCCTAAACCCTAAACC 2 1 TRUE

22712 more rows...

Slot "data":

[,1] [,2] [,3] [,4]

[1,] 0 1 0 0

[2,] 0 0 0 8

[3,] 0 1 0 0

[4,] 0 1 0 0

[5,] 0 2 0 0

more rows...
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Slot "libnames":

[1] "SL9" "SL10" "SL26" "SL32"

Slot "libsizes":

[1] 20627 35908 36864 30038

Slot "replicates":

[1] 1 1 2 2

Slot "chrs":

chr len

1 >Chr1 1000000

2 >Chr2 500000

Next, we process this alignmentData object to produce a segData object.
This segData object contains a set of potential segments on the genome de-
fined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of
these segments.

> sD <- processAD(aD, cl = cl)

> sD

An object of class "segData"

91425 rows and 4 columns

Slot "data":

SL9 SL10 SL26 SL32

1 27 17 0 16

2 28 17 0 16

3 31 18 0 16

4 32 18 0 16

5 32 19 0 18

91420 more rows...

Slot "libsizes":

[1] 20627 35908 36864 30038

Slot "replicates":

[1] 1 1 2 2

Slot "segInfo":

chr start end chunk leftSpace rightSpace

1 >Chr1 1 63 1 0 1

2 >Chr1 1 88 1 0 1

3 >Chr1 1 113 1 0 151

4 >Chr1 1 284 1 0 120

5 >Chr1 1 427 1 0 172

91420 more rows...

We can now construct a segment map from these potential segments.
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Segmentation by Clustering

A fast method of segmentation can be achieved by exploiting the bimodality
of the densities of small RNAs in the potential segments. In this approach, we
assign each potential segment to one of two clusters for each replicate group,
either as a segment or a null based on the density of sequence tags within that
segment. We then combine these clusterings for each replicate group to gain a
consensus segmentation map.

> clustSegs <- heuristicSeg(sD = sD, aD = aD, bimodality = TRUE,

+ getLikes = TRUE, cl = cl)

..

> clustSegs

An object of class "postSeg"

704 rows and 4 columns

Slot "data":

SL9 SL10 SL26 SL32

1 27 17 0 16

12 4 0 2

50 23 26 51 83

11 11 14 0

55 13 7 0 0

2 18 0 2

66 0 38 126 4

0 2 0 0

70 76 83 147 545

2 1 0 0

694 more rows...

Slot "libsizes":

[1] 20627 35908 36864 30038

Slot "groups":

[[1]]

[1] 1 1 2 2

Slot "annotation":

chr start end

352 >Chr1 1 63

1 >Chr1 64 761

353 >Chr1 762 830

2 >Chr1 831 940

354 >Chr1 941 967

3 >Chr1 968 12997

355 >Chr1 12998 13014

4 >Chr1 13015 17054
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356 >Chr1 17055 17111

5 >Chr1 17112 17274

694 more rows...

Slot "posteriors":

[,1] [,2]

[1,] -0.268927867 -4.994135e-01

[2,] -2.205597202 -3.334568e+00

[3,] -0.253691080 -8.474732e-03

[4,] -2.664073731 -9.705260e-01

[5,] -0.229650500 -3.573336e+00

[6,] -3.813012458 -4.572728e+00

[7,] -0.050553706 -6.579487e-04

[8,] -4.485685293 -4.628260e+00

[9,] -0.001421929 -2.953121e-06

[10,] -3.349046404 -4.129325e+00

694 more rows...

Segmentation by Classification

A more refined approach to the problem uses an existing segment map (or, if
not provided, a segment map defined by the clustSegs function) to acquire
empirical distributions on the density of sequence tags within a segment. We
can then estimate posterior likelihoods for each potential segment as being either
a true segment or a null. We then identifying all potential segments in the with
a posterior likelihood of being a segment greater than some value ’locsens’ and
containing no subregion with a posterior likelihood of being a null greater than
’nulsens’. We then greedily select the longest segments satisfying these criteria
that do not overlap with any other such segments in defining our segmentation
map.

> classSegs <- classifySeg(sD = sD, aD = aD, cD = clustSegs, subRegion = NULL,

+ getLikes = TRUE, cl = cl, lociCutoff = 0.9, nullCutoff = 0.9)

..

> classSegs

An object of class "postSeg"

362 rows and 4 columns

Slot "data":

SL9 SL10 SL26 SL32

51 34 37 65 83

15 25 0 2

66 0 38 126 4

0 2 0 0

70 76 83 147 545

2 1 0 0

142 76 83 147 545

26 24 0 15

259 17 13 0 0
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5 3 0 12

352 more rows...

Slot "libsizes":

[1] 20627 35908 36864 30038

Slot "groups":

[[1]]

[1] 1 1 2 2

Slot "annotation":

chr start end

176 >Chr1 762 916

1 >Chr1 917 12997

177 >Chr1 12998 13014

2 >Chr1 13015 17054

178 >Chr1 17055 17111

3 >Chr1 17112 17274

179 >Chr1 17275 17331

4 >Chr1 17332 17696

180 >Chr1 17697 17724

5 >Chr1 17725 17803

352 more rows...

Slot "posteriors":

[,1] [,2]

[1,] -0.89917371 -0.037928952

[2,] -5.46801026 -5.102126723

[3,] -0.23052105 -0.006291877

[4,] -4.81653270 -5.090747982

[5,] -0.03080019 -0.000750572

[6,] -3.23535721 -4.870902623

[7,] -0.03080019 -0.000750572

[8,] -2.20301318 -1.629780715

[9,] -0.03256760 -4.326451135

[10,] -2.09580074 -1.182311621

352 more rows...

By one of these methods, we finally acquire an annotated countData object,
with the annotations describing the co-ordinates of each segment.

We can use this countData object, in combination with the alignmentData

object, to plot the segmented genome.

> par(mfrow = c(2, 1), mar = c(2, 2, 2, 2))

> plotGenome(aD, clustSegs, chr = ">Chr1", limits = c(1, 3e+05))

> plotGenome(aD, classSegs, chr = ">Chr1", limits = c(1, 3e+05))

This countData object can now be examined for differential expression with
the baySeq package.
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