MLInterfaces

October 25, 2011

MLIntInternals

MLInterfaces infrastructure

Description

These functions are internal tools for ${\tt MLInterfaces}$. Users will generally not call these functions directly.

Usage

getGrid(x)

Arguments

Х

a vector or matrix or ExpressionSet

Details

Forthcoming.

Value

Functions with 'new' as prefix are constructor helpers.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

MT	03	rn
T ₁ T	ıea	TII

revised MLearn interface for machine learning

Description

revised MLearn interface for machine learning, emphasizing a schematic description of external learning functions like knn, lda, nnet, etc.

Usage

```
MLearn( formula, data, .method, trainInd, ...)
makeLearnerSchema(packname, mlfunname, converter)
```

Arguments

formula	standard model formula
data	data.frame or ExpressionSet instance
.method	instance of learnerSchema
trainInd	obligatory numeric vector of indices of data to be used for training; all other data are used for testing, or instance of the xvalSpec class
	additional named arguments passed to external learning function
packname	character - name of package harboring a learner function
mlfunname	character – name of function to use
converter	function – with parameters (obj, data, trainInd) that tells how to convert the material in obj [produced by [packname::mlfunname]] into a classifierOutput instance.

Details

The purpose of the MLearn methods is to provide a uniform calling sequence to diverse machine learning algorithms. In R package, machine learning functions can have parameters (x, y, \ldots) or (formula, data, ...) or some other sequence, and these functions can return lists or vectors or other sorts of things. With MLearn, we always have calling sequence MLearn (formula, data, .method, trainInd, ...), and data can be a data.frame or ExpressionSet. MLearn will always return an S4 instance of classifierObject or clusteringObject.

At this time (1.13.x), NA values in predictors trigger an error.

To obtain documentation on the older (pre bioc 2.1) version of the MLearn method, please use help(MLearn-OLD).

randomForestI randomForest. Note, that to obtain the default performance of randomForestB, you need to set mtry and sampsize parameters to sqrt(number of features) and table([training set response factor]) respectively, as these were not taken to be the function's defaults. Note you can use xvalSpec("NOTEST") as trainInd, to use all the samples; the RObject() result will print the misclassification matrix estimate along with OOB error rate estimate.

knnI(k=1,l=0) knn; special support bridge required, defined in MLint

knn.cvI(k=1,l=0) knn.cv; special support bridge required, defined in MLint. This option uses the embedded leave-one-out cross-validation of knn.cv, and thereby achieves high performance. You can have more general cross-validation using knnI with an xvalSpec, but it will be slower. When using this learner schema, you should use the numerical trainInd setting with 1:N where N is the number of samples.

dldaI diagDA; special support bridge required, defined in MLint

nnetI nnet
rpartI rpart
ldaI lda

svmI svm

qdaI qda

logisticI(threshold) glm – with binomial family, expecting a dichotomous factor as response variable, not bulletproofed against other responses yet. If response probability estimate exceeds threshold, predict 1, else 0

adaI ada

BgbmI gbm, forcing the Bernoulli loss function.

blackboost Joseph Blackboost – you MUST supply a family parameter relevant for mboost package procedures

lvqI lvqtest after building codebook with lvqinit and updating with olvq1. You will need to write your own detailed schema if you want to tweak tuning parameters.

naiveBayesI naiveBayes

baggingI bagging

sldaI slda

rdaI rda – you must supply the alpha and delta parameters to use this. Typically cross-validation is used to select these. See rdacvI below.

rdacvI rda.cv. This interface is complicated. The typical use includes cross-validation internal to the rda.cv function. That process searches a tuning parameter space and delivers an ordering on parameters. The interface selects the parameters by looking at all parameter configurations achieving the smallest min+1SE cv.error estimate, and taking the one among them that employed the -most- features (agnosticism). A final run of rda is then conducted with the tuning parameters set at that 'optimal' choice. The bridge code can be modified to facilitate alternative choices of the parameters in use. plotXvalRDA is an interface to the plot method for objects of class rdacv defined in package rda. You can use xvalSpec("NOTEST") with this procedure to use all the samples to build the discriminator.

ksvmI ksvm

hclustI(distMethod, agglomMethod) hclust – you must explicitly specify distance and agglomeration procedure.

kmeansI(centers, algorithm) kmeans – you must explicitly specify centers and algorithm name.

If the multicore package is attached, cross-validation will be distributed to cores using mclapply.

Value

Instances of classifierOutput or clusteringOutput

Author(s)

Vince Carey <styjc@channing.harvard.edu>

```
data(crabs)
set.seed(1234)
kp = sample(1:200, size=120)
rf1 = MLearn(sp~CW+RW, data=crabs, randomForestI, kp, ntree=600)
nn1 = MLearn(sp~CW+RW, data=crabs, nnetI, kp, size=3, decay=.01)
nn1
RObject (nn1)
knn1 = MLearn(sp~CW+RW, data=crabs, knnI(k=3,1=2), kp)
names(RObject(knn1))
dlda1 = MLearn(sp~CW+RW, data=crabs, dldaI, kp )
dlda1
names(RObject(dlda1))
lda1 = MLearn(sp~CW+RW, data=crabs, ldaI, kp )
lda1
names(RObject(lda1))
slda1 = MLearn(sp~CW+RW, data=crabs, sldaI, kp )
slda1
names(RObject(slda1))
svm1 = MLearn(sp~CW+RW, data=crabs, svmI, kp )
names(RObject(svm1))
ldapp1 = MLearn(sp~CW+RW, data=crabs, ldaI.predParms(method="debiased"), kp )
names (RObject (ldapp1))
qda1 = MLearn(sp~CW+RW, data=crabs, qdaI, kp )
qda1
names(RObject(qda1))
logi = MLearn(sp~CW+RW, data=crabs, glmI.logistic(threshold=0.5), kp, family=binomial) #
names(RObject(logi))
rp2 = MLearn(sp~CW+RW, data=crabs, rpartI, kp)
rp2
## recode data for RAB
\#nsp = ifelse(crabs\$sp=="0", -1, 1)
#nsp = factor(nsp)
#ncrabs = cbind(nsp,crabs)
\#rab1 = MLearn(nsp~CW+RW, data=ncrabs, RABI, kp, maxiter=10)
#rab1
# new approach to adaboost
ada1 = MLearn(sp ~ CW+RW, data = crabs, .method = adaI,
   trainInd = kp, type = "discrete", iter = 200)
ada1
confuMat (ada1)
lvq.1 = MLearn(sp~CW+RW, data=crabs, lvqI, kp )
lvq.1
nb.1 = MLearn(sp~CW+RW, data=crabs, naiveBayesI, kp )
confuMat(nb.1)
bb.1 = MLearn(sp~CW+RW, data=crabs, baggingI, kp )
confuMat(bb.1)
```

```
# new mboost interface -- you MUST supply family for nonGaussian response
require(party) # trafo ... killing cmd check
blb.1 = MLearn(sp~CW+RW+FL, data=crabs, blackboostI, kp, family=mboost::Binomial() )
confuMat(blb.1)
# ExpressionSet illustration
data(sample.ExpressionSet)
X = MLearn(type~., sample.ExpressionSet[100:250,], randomForestI, 1:16, importance=TRUE)
library(randomForest)
library(hgu95av2.db)
opar = par(no.readonly=TRUE)
plot(getVarImp(X), n=10, plat="hgu95av2", toktype="SYMBOL")
par(opar)
# demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs[c(1:20,101:120),], nnetI, xvalSpec("LOO"), size=3, details (size=3), details (size
confuMat(nn1cv)
nn2cv = MLearn(sp \sim CW + RW, data = crabs[c(1:20,101:120),], nnetI,
      xvalSpec("LOG",5, balKfold.xvspec(5)), size=3, decay=.01 )
nn3cv = MLearn(sp \sim CW + RW + CL + BD + FL, data = crabs[c(1:20,101:120),], nnetI,
      xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01 )
confuMat(nn3cv)
nn4cv = MLearn(sp~.-index-sex, data=crabs[c(1:20,101:120),], nnetI,
      xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.absT(2)), size=3, decay=.01 )
confuMat(nn4cv)
# try with expression data
library(golubEsets)
data(Golub_Train)
litg = Golub_Train[ 100:150, ]
g1 = MLearn(ALL.AML~., litg, nnetI, xvalSpec("LOG",5, balKfold.xvspec(5), fsFun=fs.prob"
confuMat(g1)
# illustrate rda.cv interface from package rda (requiring local bridge)
library (ALL)
data (ALL)
# restrict to BCR/ABL or NEG
bio <- which ( ALL$mol.biol %in% c("BCR/ABL", "NEG"))
# restrict to B-cell
isb <- grep("^B", as.character(ALL$BT))</pre>
kp <- intersect(bio,isb)</pre>
all2 <- ALL[,kp]
mads = apply(exprs(all2),1,mad)
kp = which(mads>1) # get around 250 genes
val12 = al12[kp, ]
vall2$mol.biol = factor(vall2$mol.biol) # drop unused levels
```

6 RAB

```
r1 = MLearn(mol.biol~., vall2, rdacvI, 1:40)
confuMat(r1)
RObject(r1)
plotXvalRDA(r1)  # special interface to plots of parameter space

# illustrate clustering support

cl1 = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)))
plot(cl1)

cl1a = MLearn(~CW+RW+CL+FL+BD, data=crabs, hclustI(distFun=dist, cutParm=list(k=4)),
    method="complete")
plot(cl1a)

cl2 = MLearn(~CW+RW+CL+FL+BD, data=crabs, kmeansI, centers=5, algorithm="Hartigan-Wong")
plot(cl2, crabs[,-c(1:3)])

c3 = MLearn(~CL+CW+RW, crabs, pamI(dist), k=5)
c3
plot(c3, data=crabs[,c("CL", "CW", "RW")])
```

RAB

real adaboost (Friedman et al)

Description

read adaboost ... a demonstration version

Usage

```
RAB(formula, data, maxiter=200, maxdepth=1)
```

Arguments

formula – the response variable must be coded -1, 1

data data maxiter maxiter

maxdepth — passed to rpart

Value

an instance of raboostCont

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

References

Friedman et al Ann Stat 28/2 337

balKfold.xvspec 7

Examples

```
library(MASS)
data(Pima.tr)
data(Pima.te)
Pima.all = rbind(Pima.tr, Pima.te)
tonp = ifelse(Pima.all$type == "Yes", 1, -1)
tonp = factor(tonp)
Pima.all = data.frame(Pima.all[,1:7], mtype=tonp)
fit1 = RAB(mtype~ped+glu+npreg+bmi+age, data=Pima.all[1:200,], maxiter=10, maxdepth=5)
pfit1 = Predict(fit1, newdata=Pima.tr)
table(Pima.tr$type, pfit1)
```

balKfold.xvspec

generate a partition function for cross-validation, where the

Description

generate a partition function for cross-validation, where the partitions are approximately balanced with respect to the distribution of a response variable

Usage

```
balKfold.xvspec(K)
```

Arguments

K

number of partitions to be computed

Details

This function returns a closure. The symbol K is bound in the environment of the returned function.

Value

A closure consisting of a function that can be used as a partitionFunc for passage in xvalSpec.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

```
## The function is currently defined as
function (K)
function(data, clab, iternum) {
    clabs <- data[[clab]]
    narr <- nrow(data)
    cnames <- unique(clabs)
    ilist <- list()
    for (i in 1:length(cnames)) ilist[[cnames[i]]] <- which(clabs == cnames[i])
    clens <- lapply(ilist, length)
    nrep <- lapply(clens, function(x) ceiling(x/K))</pre>
```

8 classifierOutput-class

```
grpinds <- list()
  for (i in 1:length(nrep)) grpinds[[i]] <- rep(1:K, nrep[[i]])[1:clens[[i]]]
  (1:narr)[-which(unlist(grpinds) == iternum)]
}
# try it out
data(crabs)
plc = balKfold.xvspec(5)
inds = plc( crabs, "sp", 3 )
table(crabs$sp[inds] )
inds2 = plc( crabs, "sp", 4 )
table(crabs$sp[inds2] )
allc = 1:200
# are test sets disjoint?
intersect(setdiff(allc,inds), setdiff(allc,inds2))</pre>
```

classifierOutput-class

Class "classifierOutput"

Description

This class summarizes the output values from different classifiers.

Objects from the Class

Objects are typically created during the application of a supervised machine learning algorithm to data and are the value returned. It is very unlikely that any user would create such an object by hand.

Slots

- testOutcomes: Object of class "factor" that lists the actual outcomes in the records on the test set
- testPredictions: Object of class "factor" that lists the predictions of outcomes in the test set
- testScores: Object of class "ANY" this element will include matrices or vectors or arrays that include information that is typically related to the posterior probability of occupancy of the predicted class or of all classes. The actual contents of this slot can be determined by inspecting the converter element of the learnerSchema used to select the model.
- trainOutcomes: Object of class "factor" that lists the actual outcomes in records on the training set
- trainPredictions: Object of class "factor" that lists the predicted outcomes in the training set
- trainScores: Object of class "ANY" see the description of testScores above; the same information is returned, but applicable to the training set records.
- RObject: Object of class "ANY" when the trainInd parameter of the MLearn call is numeric, this slot holds the return value of the underlying R function that carried out the predictive modeling. For example, if rpartI was used as MLearn method, Robject holds an instance of the rpart S3 class, and plot and text methods can be applied to this. When the trainInd parameter of the MLearn call is an instance of xvalSpec, this slot holds

classifierOutput-class 9

a list of results of cross-validatory iterations. Each element of this list has two elements: test.idx, giving the numeric indices of the test cases for the associated cross-validation iteration, and mlans, which is the classifierOutput for the associated iteration. See the example for an illustration of 'digging out' the predicted probabilities associated with each cross-validation iteration executed through an xvalSpec specification.

embeddedCV: logical value that is TRUE if the procedure in use performs its own cross-validation fsHistory: list of features selected through cross-validation process

learnerSchema: propagation of the learner schema object used in the call

call: Object of class "call" - records the call used to generate the classifierOutput RObject

Methods

confuMat signature(obj = "classifierOutput"): Compute the confusion matrix for
test records.

confuMatTrain signature(obj = "classifierOutput"): Compute the confusion matrix for training set. Typically yields optimistically biased information on misclassification rate.

RObject signature (obj = "classifierOutput"): The R object returned by the underlying classifier. This can then be passed on to specific methods for those objects, when they exist.

show signature(object = "classifierOutput"): A print method that provides a
summary of the output of the classifier.

```
testScores signature(object = "classifierOutput"):...
```

testPredictions signature(object = "classifierOutput"): Print the predicted classes
for each sample/individual in the test set.

trainPredictions signature(object = "classifierOutput"): Print the predicted classes
 for each sample/individual in the training set.

fsHistory signature(object = "classifierOutput"):...

Author(s)

V. Carey

```
showClass("classifierOutput")
library(golubEsets)
data(Golub_Train) # now cross-validate a neural net
set.seed(1234)
xv5 = xvalSpec("LOG", 5, balKfold.xvspec(5))
m2 = MLearn(ALL.AML~., Golub_Train[1000:1050,], nnetI, xv5,
    size=5, decay=.01, maxit=1900 )
testScores(RObject(m2)[[1]]$mlans)
alls = lapply(RObject(m2), function(x) testScores(x$mlans))
```

10 clusteringOutput-class

```
clusteringOutput-class
```

container for clustering outputs in uniform structure

Description

container for clustering outputs in uniform structure

Objects from the Class

Objects can be created by calls of the form new ("clusteringOutput", ...).

Slots

```
partition: Object of class "integer", labels for observations as clustered
silhouette: Object of class "silhouette", structure from Rousseeuw cluster package measuring cluster membership strength per observation
prcomp: Object of class "prcompObj" a wrapped instance of stats package prcomp output
call: Object of class "call" for auditing
learnerSchema: Object of class "learnerSchema", a formal object indicating the package,
    function, and other attributes of the clustering algorithm employed to generate this object
RObject: Object of class "ANY", the unaltered output of the function called according to learnerSchema
converter: converter propagated from call
distFun: distfun propagated from call
```

Methods

```
RObject signature (x = "clusteringOutput"): extract the unaltered output of the R function or method called according to learnerSchema
```

plot signature (x = "clusteringOutput", y = "ANY"): a 4-panel plot showing features of the clustering, including the scree plot for a principal components transformation and a display of the partition in PC1xPC2 plane. For a clustering method that does not have a native plot procedure, such as kmeans, the parameter y should be bound to a data frame or matrix with feature data for all records; an image plot of robust feature z-scores (z=(x-median(x))/mad(x)) and the cluster indices is produced in the northwest panel.

```
show signature(object = "clusteringOutput"): concise report
```

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

```
showClass("clusteringOutput")
```

confuMat-methods 11

confuMat-methods Compute the confusion matrix for a classifier.

Description

This function will compute the confusion matrix for a classifier's output

Methods

- **obj = "classifOutput"** Typically, an instance of class "classifierOutput" is built on a training subset of the input data. The model is then used to predict the class of samples in the test set. When the true class labels for the test set are available the confusion matrix is the crosstabulation of the true labels of the test set against the predictions from the classifier.
- **obj = "classifierOutput", type="character"** For instances of classifierOutput, it is possible to specify the type of confusion matrix desired. The default is test, which tabulates classes from the test set against the associated predictions. If type is train, the training class vector is tabulated against the predictions on the training set.

Examples

```
library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[101:150,]
k1 <- MLearn(ALL.AML~., smallG, knnI(k=1), 1:30)
confuMat(k1)
confuMat(k1, "train")</pre>
```

fs.absT

support for feature selection in cross-validation

Description

support for feature selection in cross-validation

Usage

```
fs.absT(N)
fs.probT(p)
fs.topVariance(p)
```

Arguments

N number of features to retain; features are ordered by descending value of abs(two-sample t stat.), and the top N are used.

p cumulative probability (in (0,1)) in the distribution of absolute t statistics above which we retain features

Details

This function returns a function that will be used as a parameter to xvalSpec in applications of MLearn.

12 fsHistory

Value

a function is returned, that will itself return a formula consisting of the selected features for application of MLearn.

Note

The functions fs.absT and fs.probT are two examples of approaches to embedded feature selection that make sense for two-sample prediction problems. For selection based on linear models or other discrimination measures, you will need to create your own selection helper, following the code in these functions as examples.

fs.topVariance performs non-specific feature selection based on the variance. Argument p is the variance percentile beneath which features are discarded.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

See Also

MLearn

Examples

```
# we will demonstrate this procedure with the crabs data.
# first, create the closure to pick 3 features
demFS = fs.absT(3)
# run it on the entire dataset with features excluding sex
demFS(sp~.-sex, crabs)
# emulate cross-validation by excluding last 50 records
demFS(sp~.-sex, crabs[1:150,])
# emulate cross-validation by excluding first 50 records -- different features retained
demFS(sp~.-sex, crabs[51:200,])
```

fsHistory

extract history of feature selection for a cross-validated machine

Description

extract history of feature selection for a cross-validated machine learner

Usage

```
fsHistory(x)
```

Arguments

х

instance of classifierOutput

Details

returns a list of names of selected features

learnerSchema-class 13

Value

a list; the names of variables are made 'syntactic'

Author(s)

Vince Carey <styjc@channing.harvard.edu>

Examples

```
data(iris)
iris2 = iris[ iris$Species %in% levels(iris$Species)[1:2], ]
iris2$Species = factor(iris2$Species) # drop unused levels
x1 = MLearn(Species~., iris2, ldaI, xvalSpec("LOG", 3,
    balKfold.xvspec(3), fs.absT(3)))
fsHistory(x1)
```

learnerSchema-class

Class "learnerSchema" - convey information on a machine learning

Description

conveys information about machine learning functions in CRAN packages, for example, to MLearn wrapper

Objects from the Class

Objects can be created by calls of the form new ("learnerSchema", ...).

Slots

packageName: Object of class "character" string naming the package in which the function to be used is defined.

mlFunName: Object of class "character" string naming the function to be used

converter: Object of class "function" function with parameters obj, data, trainInd, that will produce a classifierOutput instance

Methods

```
MLearn signature(formula = "formula", data = "data.frame", method =
    "learnerSchema", trainInd = "numeric"): execute desired learner passing a
    formula
```

```
show signature(object = "learnerSchema"): concise display
```

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

14 planarPlot-methods

Examples

```
showClass("learnerSchema")
```

planarPlot-methods *Methods for Function planarPlot in Package 'MLInterfaces'*

Description

show the classification boundaries on the plane dictated by two genes in an ExpressionSet

Methods

clo = "classifierOutput", eset = "ExpressionSet", classifLab = "character" uses two genes in
the ExpressionSet to exhibit the decision boundaries in the plane

clo = "classifierOutput", eset = "data.frame", classifLab = "character" uses two columns in
the data.frame to exhibit the decision boundaries in the plane

```
library(ALL)
library(hgu95av2.db)
data(ALL)
# restrict to BCR/ABL or NEG
bio <- which( ALL$mol.biol %in% c("BCR/ABL", "NEG"))</pre>
# restrict to B-cell
isb <- grep("^B", as.character(ALL$BT))</pre>
kp <- intersect(bio,isb)</pre>
all2 <- ALL[,kp]
# sample 2 genes at random
set.seed(1234)
ng <- nrow(exprs(all2))</pre>
pick <- sample(1:ng, size=2, replace=FALSE)</pre>
gg <- all2[pick,]
sym <- unlist(mget(featureNames(gg), hgu95av2SYMBOL))</pre>
featureNames(gg) <- sym</pre>
gg$class = factor(ifelse(all2$mol.biol=="NEG", "NEG", "POS"))
cl1 <- which( gg$class == "NEG" )</pre>
cl2 <- which( gg$class != "NEG")
# create balanced training sample
trainInds <- c( sample(cl1, size=floor(length(cl1)/2) ),</pre>
      sample(cl2, size=floor(length(cl2)/2)) )
# run rpart
```

raboostCont-class 15

```
tgg <- MLearn(class~., gg, rpartI, trainInds, minsplit=4)
opar <- par(no.readonly=TRUE)</pre>
par(mfrow=c(2,2))
planarPlot( tgg, gg, "class" )
title("rpart")
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="N
# run nnet
#
ngg <- MLearn( class~., gg, nnetI, trainInds, size=8 )</pre>
planarPlot( ngg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="N
title("nnet")
# run knn
kgg <- MLearn(class~., gg, knnI(k=3,l=1), trainInds)
planarPlot( kgg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="N
title("3-nn")
# run svm
sgg <- MLearn( class~., gg, svmI, trainInds )</pre>
planarPlot( sgg, gg, "class" )
points(exprs(gg)[1,trainInds], exprs(gg)[2,trainInds], col=ifelse(gg$class[trainInds]=="N
title("svm")
par(opar)
```

```
raboostCont-class Class "raboostCont" ~~~
```

Description

~~ A concise (1-5 lines) description of what the class is. ~~

Objects from the Class

```
Objects can be created by calls of the form new("raboostCont", ...). ~~ describe objects here ~~
```

Slots

```
.Data: Object of class "list" ~~
formula: Object of class "formula" ~~
call: Object of class "call" ~~
```

Extends

```
Class "list", from data part. Class "vector", by class "list", distance 2.
```

Methods

Predict is an S4 method that can apply to instances of this class.

16 varImpStruct-class

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

```
showClass("raboostCont")
```

varImpStruct-class Class "varImpStruct" - collect data on variable importance from various

Description

collects data on variable importance

Objects from the Class

Objects can be created by calls of the form new("varImpStruct", ...). These are matrices of importance measures with separate slots identifying algorithm generating the measures and variable names.

Slots

```
.Data: Object of class "matrix" actual importance measures
method: Object of class "character" tag
varnames: Object of class "character" conformant vector of names of variables
```

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array", by class "matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector", by class "matrix", with explicit coerce.

Methods

```
plot signature(x = "varImpStruct"): make a bar plot, you can supply arguments plat
    and toktype which will use lookUp(..., plat, toktype) from the annotate pack-
    age to translate probe names to, e.g., gene symbols.
```

```
show signature(object = "varImpStruct"): simple abbreviated display
```

getVarImp signature(object = "classifOutput", fixNames="logical"): extractor of variable importance structure; fixNames parameter is to remove leading X used to make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to false if using hu6800 platform, because all featureNames are syntactic as given.

report signature (object = "classifOutput", fixNames="logical"): extractor of variable importance data, with annotation; fixNames parameter is to remove leading X used to make variable names syntactic by randomForest (ca 1/2008). You can set fixNames to false if using hu6800 platform, because all featureNames are syntactic as given.

xvalLoop 17

Examples

```
library(golubEsets)
data(Golub_Merge)
library(hu6800.db)
smallG <- Golub_Merge[1001:1060,]
set.seed(1234)
opar=par(no.readonly=TRUE)
par(las=2, mar=c(10,11,5,5))
rf2 <- MLearn(ALL.AML~., smallG, randomForestI, 1:40, importance=TRUE,
    sampsize=table(smallG$ALL.AML[1:40]), mtry=sqrt(ncol(exprs(smallG))))
plot( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")
par(opar)
report( getVarImp( rf2, FALSE ), n=10, plat="hu6800", toktype="SYMBOL")</pre>
```

xvalLoop

Cross-validation in clustered computing environments

Description

Use cross-validation in a clustered computing environment

Usage

```
xvalLoop( cluster, ... )
```

Arguments

cluster Any S4-class object, used to indicate how to perform clustered computations.

... Additional arguments used to inform the clustered computation.

Details

Cross-validation usually involves repeated calls to the same function, but with different arguments. This provides an obvious place for using clustered computers to enhance execution. The method xval is structured to exploit this; xvalloop provides an easy mechanism to change how xval performs cross-validation.

The idea is to write an xvalLoop method that returns a function. The function is then used to execute the cross-validation. For instance, the default method returns the function lapply, so the cross-validation is performed by using lapply. A different method might return a function that executed lapply-like functions, but sent different parts of the function to different computer nodes.

An accompanying vignette illustrates the technique in greater detail. An effective division of labor is for experienced cluster programmers to write lapply-like methods for their favored clustering environment. The user then only has to add the cluster object to the list of arguments to xval to get clustered calculations.

Value

A function taking arguments like those for lapply

18 xvalSpec

Examples

```
## Not run:
library(golubEsets)
data(Golub_Merge)
smallG <- Golub_Merge[200:250,]</pre>
# Evaluation on one node
lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0))</pre>
table(lk1, smallG$ALL.AML)
\# Evaluation on several nodes -- a cluster programmer might write the following...
library(snow)
setOldClass("spawnedMPIcluster")
setMethod("xvalLoop", signature( cluster = "spawnedMPIcluster"),
## use the function returned below to evalutae
## the central cross-validation loop in xval
function( cluster, ...) {
    clusterExportEnv <- function (cl, env = .GlobalEnv)</pre>
        unpackEnv <- function(env) {</pre>
            for ( name in ls(env) ) assign(name, get(name, env), .GlobalEnv )
            NULL
        }
        clusterCall(cl, unpackEnv, env)
    function(X, FUN, ...) { \# this gets returned to xval
        ## send all visible variables from the parent (i.e., xval) frame
        clusterExportEnv( cluster, parent.frame(1) )
        parLapply( cluster, X, FUN, ...)
})
# ... and use the cluster like this...
cl <- makeCluster(2, "MPI")</pre>
clusterEvalQ(cl, library(MLInterfaces))
lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO", group=as.integer(0), cluster = cl)</pre>
table(lk1, smallG$ALL.AML)
## End(Not run)
```

xvalSpec

container for information specifying a cross-validated machine learning

Description

container for information specifying a cross-validated machine learning exercise

xvalSpec 19

Usage

Arguments

type a string, "LOO" indicating leave-one-out cross-validation, or "LOG" indicating

leave-out-group, or "NOTEST", indicating the entire dataset is used in a single

training run.

niter numeric specification of the number of cross-validation iterations to use. Ig-

nored if type is "LOO".

partitionFunc

function, with parameters data (bound to data.frame), clab (bound to character string), iternum (bound to numeric index into sequence of 1:niter). This function's job is to provide the indices of training cases for each cross-validation step. An example is balkfold.xvspec, which computes a series of indices that are approximately balanced with respect to frequency of outcome types.

fsFun function, with parameters formula, data. The function must return a formula

suitable for defining a model on the basis of the main input data. A candidate

fsFun is given in example for fsHistory function.

Details

If type == "LOO", no other parameters are inspected. If type == "LOG" a value for partitionFunc must be supplied. We recommend using balKfold.xvspec(K). The values of niter and K in this usage must be the same. This redundancy will be removed in a future upgrade.

If the multicore package is attached, cross-validation will be distributed to cores using mclapply.

Value

An instance of classifierOutput, with a special structure. The RObject return slot is populated with a list of niter cross-validation results. Each element of this list is itself a list with two elements: test.idx (the indices of the test set for the associated cross-validation iteration, and mlans, the classifierOutput generated at each iteration. Thus there are classifierOutput instances nested within the main classifierOutput returned when a xvalSpec is used.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

```
data(crabs)
set.seed(1234)
#
# demonstrate cross validation
#
nn1cv = MLearn(sp~CW+RW, data=crabs, nnetI, xvalSpec("LOG",
    5, balKfold.xvspec(5)), size=3, decay=.01)
nn1cv
confuMat(nn1cv)
```

20 xvalSpec

names(RObject(nn1cv)[[1]])
RObject(RObject(nn1cv)[[1]]\$mlans)

Index

```
*Topic classes
                                         confuMat,classifierOutput-method
   classifierOutput-class,8
                                                 (confuMat-methods), 11
                                         confuMat-methods, 11
   clusteringOutput-class, 10
    learnerSchema-class, 13
                                         DAB (RAB), 6
   raboostCont-class, 15
                                         daboostCont-class
    varImpStruct-class, 16
                                                 (raboostCont-class), 15
*Topic classif
                                         diagDA, 3
   confuMat-methods, 11
                                         dlda (MLearn), 2
   MLIntInternals, 1
                                         dlda2 (MLearn), 2
*Topic manip
                                         dldaI (MLearn), 2
   balKfold.xvspec, 7
*Topic methods
                                         fs.absT, 11
   confuMat-methods, 11
                                         fs.probT (fs.absT), 11
   planarPlot-methods, 14
                                         fs.topVariance(fs.absT), 11
   xvalLoop, 17
                                         fsHistory, 12
*Topic models
                                         fsHistory, classifierOutput-method
   balKfold.xvspec, 7
                                                 (classifierOutput-class), 8
   fs.absT, 11
   fsHistory, 12
                                         gbm, 3
   MLearn, 2
                                         gbm2 (MLearn), 2
   RAB, 6
                                         getConverter
   xvalSpec, 18
                                                 (clusteringOutput-class),
ada, 3
                                         getConverter,clusteringSchema-method
adaI (MLearn), 2
                                                 (clusteringOutput-class),
                                                 10
bagging, 3
                                         getDist(clusteringOutput-class),
baggingI (MLearn), 2
                                                 10
balKfold.xvspec, 7, 19
                                         getDist, clusteringSchema-method
BqbmI (MLearn), 2
                                                 (clusteringOutput-class),
blackboost, 3
blackboostI (MLearn), 2
                                         getGrid (MLIntInternals), 1
                                         getGrid, data.frame-method
classifierOutput, 9, 11, 12, 19
                                                 (MLIntInternals), 1
classifierOutput-class,8
                                         getGrid, ExpressionSet-method
classifOutput (MLIntInternals), 1
                                                 (MLIntInternals), 1
clusteringOutput-class, 10
                                         getVarImp(varImpStruct-class), 16
clustOutput (MLIntInternals), 1
                                         getVarImp,classifierOutput,logical-method
confuMat (confuMat-methods), 11
                                                 (varImpStruct-class), 16
confuMat, classifierOutput, character-megtett&MarImp, classifierOutput, missing-method
       (confuMat-methods), 11
                                                 (varImpStruct-class), 16
confuMat, classifierOutput, missing-methgedt VarImp, classifOutput, logical-method
       (confuMat-methods), 11
                                                 (varImpStruct-class), 16
```

22 INDEX

glm, 3	nnetI(<i>MLearn</i>), 2	
glmI.logistic(MLearn),2	nonstandardLearnerSchema-class	
groupIndex (MLIntInternals), 1	(learnerSchema-class), 13	
hclust,3	pamI (MLearn), 2	
hclustI(<i>MLearn</i>), 2	planarPlot(planarPlot-methods),	
	14	
kmeans, 3	planarPlot, classifierOutput, data.frame, charact	
kmeansI(<i>MLearn</i>), 2	(planarPlot-methods), 14	
knn, 2	planarPlot, classifierOutput, ExpressionSet, char	
knn.cv, 3	(planarPlot-methods), 14	
knn.cv2(MLearn),2	planarPlot-methods, 14	
knn.cvI(MLearn), 2	plot,clusteringOutput,ANY-method	
knn2 (MLearn), 2	(clusteringOutput-class),	
knnI (MLearn), 2	10	
ksvm, 3	plot, varImpStruct, ANY-method	
ksvmI (MLearn), 2	(varImpStruct-class), 16	
1 1 17	plot,varImpStruct-method	
lapply, 17	(varImpStruct-class), 16	
lda, 3	plotXvalRDA(<i>MLearn</i>), 2	
ldaI (MLearn), 2	Predict (RAB), 6	
learnerSchema-class, 13	Predict, daboostCont-method(RAB),	
list, 15	6	
lvq(MLearn), 2	Predict, raboostCont-method (RAB),	
lvqI (MLearn), 2	6	
lvqtest, 3	probArray (MLIntInternals), 1	
makeLearnerSchema (MLearn), 2	<pre>probMat (MLIntInternals), 1</pre>	
mclapply, 3, 19		
membMat (MLIntInternals), 1	qda, 3	
mkfmla (RAB), 6	qdaI (MLearn), 2	
MLearn, 2, 11, 12	qualScore (MLIntInternals), 1	
MLearn, formula, data.frame, clusteringS	Schema ANY-method	
(MLearn), 2	RAB, 6	
MLearn, formula, data.frame, learnerSche		
(MLearn), 2	RAB4es (RAB), 6	
MLearn, formula, data.frame, learnerSche		
(MLearn), 2	raboostCont-class, 15	
MLearn, formula, ExpressionSet, characte		
(MLearn), 2	randomForestI(MLearn), 2	
MLearn, formula, ExpressionSet, learnerS		
(MLearn), 2	rda.cv, 3	
MLearn, formula, ExpressionSet, learnerS		
(MLearn), 2	rdacvML (MLearn), 2	
MLearn_new (MLearn), 2	rdaI (MLearn), 2	
MLIntInternals, 1	rdaML (MLearn), 2	
MLLabel (MLIntInternals), 1	report (varImpStruct-class), 16	
MLOutput (MLIntInternals), 1	report, varImpStruct-method	
MLScore (MLIntInternals), 1	(varImpStruct-class), 16	
	RObject (classifierOutput-class),	
naiveBayes, 3	8	
naiveBayesI (MLearn), 2	RObject, classifierOutput-method	
nnet, 3	(classifierOutput-class),8	

INDEX 23

```
RObject, clusteringOutput-method
       (clusteringOutput-class),
       10
rpart, 3
rpartI (MLearn), 2
show, classifierOutput-method
       (classifierOutput-class), 8
show, clusteringOutput-method
       (clusteringOutput-class),
show, clusteringSchema-method
       (clusteringOutput-class),
show, learnerSchema-method
       (learnerSchema-class), 13
show, raboostCont-method
       (raboostCont-class), 15
show, varImpStruct-method
       (varImpStruct-class), 16
silhouetteVec (MLIntInternals), 1
slda, 3
sldaI (MLearn), 2
SOMBout (MLIntInternals), 1
somout (MLIntInternals), 1
standardMLIConverter (MLearn), 2
svm, 3
svmI (MLearn), 2
testPredictions
       (classifierOutput-class), 8
testPredictions, classifierOutput-method
       (classifierOutput-class), 8
testScores
       (classifierOutput-class), 8
testScores, classifierOutput-method
       (classifierOutput-class), 8
tonp (RAB), 6
trainPredictions
       (classifierOutput-class), 8
trainPredictions, classifierOutput-method
       (classifierOutput-class), 8
varImpStruct-class, 16
vector, 15
xvalLoop, 17
xvalSpec, 7, 8, 11, 18
xvalSpec-class (xvalSpec), 18
```