
The RTools4TB package: data mining of public

microarray data through connections to the

TranscriptomeBrowser database.

A. Bergon, F. Lopez, J. Textoris, S. Granjeaud and D. Puthier

October 28, 2009

TAGC/Inserm U928. Parc Scientifique de Luminy case 928. 163, avenue de Luminy. 13288
MARSEILLE cedex 09. FRANCE

bergon@tagc.univ-mrs.fr

Contents

1 Overview 1

2 Fetching transcriptional signatures from TBrowserDB 2
2.1 The getSignatures function . 2

2.1.1 Request without logical operators (gene list) . 4
2.1.2 Request using logical operators . 4

2.2 Finding the biological contexts in which sets of genes are co-expressed 5
2.3 Finding transcriptional neighbors . 6
2.4 Vizualising expression matrix. 6

3 Creating transcriptional signatures from a user defined data set using DBF-MCL
algorithm. 9
3.1 Installation . 10
3.2 Examples . 11

1 Overview

TranscriptomeBrowser (TBrowser, http://tagc.univ-mrs.fr/tbrowser) hosts a large collection of
transcriptional signatures (TS) automatically extracted from the Gene Expression Omnibus (GEO)
database. Each GEO experiment (GSE) was processed so that a subset of the original expression
matrix containing the most relevant/informative genes was kept and organized into a set of homogeneous
signatures [1]. Each signature was tested for functional enrichment using annotations terms obtained
from numerous ontologies or curated databases (Gene Ontology, KEGG, BioCarta, Swiss-Prot, BBID,
SMART, NIH Genetic Association DB, COG/KOG...) using the DAVID knowledgebase [2].
RTools4TB is a library for data mining of public microarray data. RTools4TB can be helpful (i) to
define the biological contexts (i.e, experiments) in which a set of genes are co-expressed and (ii) to define
their most frequent neighbors [1]. The RTools4TB package also implements the DBF-MCL algorithm
(”Density Based Filtering And Markov Clustering”) that can be used for fast and automated partitioning
of microarray data. DBF-MCL is a tree-step adaptative algorithm that (i) find elements located in dense

1

http://tagc.univ-mrs.fr/tbrowser

areas (ie. clusters) (ii) uses selected items to construct a graph and (iii) performs graph partitioning
using MCL [3]. Note that a UNIX-like systems is required to use DBF-MCL.

2 Fetching transcriptional signatures from TBrowserDB

2.1 The getSignatures function

Connection to the TranscriptomeBrowser database (TBrowserDB) relies on the getSignatures, get-
ExpressionMatrix and getTBInfo functions.

Basically, the getSignatures function can be used to retrieve transcriptional signature IDs using
gene symbol(s), probe ID(s), experiment ID, microarray platform ID or annotation term(s) as input.
This is controled by the ”field” argument.

> library(RTools4TB)

> args(getSignatures)

function (field = c("gene", "probe", "platform", "experiment",
"annotation"), value = NULL, qValue = NULL, nbMin = NULL,
verbose = TRUE, save = FALSE)

NULL

Once the field argument is set, one need to provide a value as input. For instance the following
query use gene name as input with value ”PCNA”.

> res <- getSignatures(field = "gene", value = "PCNA")

> head(res)

Transcriptional signature IDs can also be obtained by selecting the relevant experiment IDs, platform
IDs and probe IDs. To get all transcriptional signature IDs associated with GSE2004 experiment, one
should use the following syntax:

> res <- getSignatures(field = "experiment", value = "GSE2004")

23 signatures were found for the request:
GSE = GSE2004

To get all signatures obtained on GPL96 platform, use the following syntax:

> res <- getSignatures(field = "platform", value = "GPL96")

3377 signatures were found for the request:
GPL = GPL96

Moreover, as all signatures were tested for functional enrichment using keywords from the DAVID
knowledgebase these terms can be used to query the database (DAVID collects a wide range of an-
notation from several databases including: GO, BIOCARTA, KEGG, PANTHER, BBID,...) . The
annotationList dataset contains the annotations terms.

> data(annotationList)

> names(annotationList)

[1] "Keyword" "TableName"

2

> attach(annotationList)

> annotationList[1:4,]

Keyword TableName
1 1.RBphosphoE2F BBID
2 100.MAPK_signaling_cascades BBID
3 104.Insulin_signaling BBID
4 105.Signaling_glucose_uptake BBID

> table(TableName)

TableName
BBID BIOCARTA COG_KOG_ONTOLOGY
57 468 22

CYTOBAND GENETIC_ASSOCIATION_DB GOTERM_BP_ALL
526 68 1273

GOTERM_CC_ALL GOTERM_MF_ALL INTERPRO_NAME
328 639 777

KEGG_PATHWAY KEGG_REACTION OMIM_PHENOTYPE
334 78 10

PANTHER_PATHWAY PFAM_NAME PIR_HOMOLOGY_DOMAIN
104 531 86

PIR_SUPERFAMILY_NAME PUBMED_ID SMART_NAME
160 4887 235

SP_PIR_KEYWORDS
568

The selected terms can be used to select TS IDs. In this case, user should define a q-value. For
instance one can select TS enriched in genes related to the ”HSA04110:CELL CYCLE” KEGG pathway
with q-value below 10e−20.

> cc <- getSignatures(field = "annotation", value = "HSA04110:CELL CYCLE",

+ qValue = 20)

66 signatures were found for the request:
annotation = HSA04110:CELL CYCLE

Of note, one can also search for TS IDs containing genes located in the same chromosomal region. For
instance one can select TS IDs enriched in genes located in the ”8q” region which is frequently amplified
or deleted in tumors. This will point out the biological contexts in which sets of genes located in the
8q region share the same expression profile, suggesting amplifications or deletions in some biological
samples.

> query <- paste(grep("^8q", Keyword, val = T), collapse = "|")

> query

[1] "8q13|8q21|8q21.11|8q21.2|8q22.1|8q22.3|8q24|8q24.13|8q24.3"

> cc <- getSignatures(field = "annotation", value = query, qValue = 10)

4 signatures were found for the request:
annotation = 8q13|8q21|8q21.11|8q21.2|8q22.1|8q22.3|8q24|8q24.13|8q24.3

Next sections will introduce more complexe queries using sets of genes with or without Boolean
operators.

3

2.1.1 Request without logical operators (gene list)

When field is set to ”gene” or ”probe”, user can perform a request using a list of item separated by
blanks. These blanks are interpreted as the OR logical operators. In this case, all signatures containing
at least one gene of the list will be returned. To select more informative signatures we suggest to use
the nbMin argument that will select signatures containing at least nbMin genes out of the list.

The following examples search for signatures containing at least 2 genes of the input list (CD3D,
CD3E and CD4).

> gl <- getSignatures(field = "gene", value = "CD3D CD3E CD4",

+ nbMin = 2)

150 signatures were found for the request:
gene = CD3D CD3E CD4 and nbMin = 2

> head(gl)

Signature nb.Genes
1 03AD63FB5 2
2 050367D10 2
3 053ECFACF 3
4 05F2203B7 2
5 0C0A8F888 2
6 0D2EA9D52 2

2.1.2 Request using logical operators

The ”value” argument of getSignatures may contain the following Boolean operators (see help section
on TranscriptomeBrowser web site for more informations, http://tagc.univ-mrs.fr/tbrowser)

• & : AND

• | : OR

• ! : NOT , (used in conjonction with &)

This is a convenient way to create relevant queries. Suppose your field of interest is related to T-cell
activation. You could be interested in retrieving all TS IDs that contain the CD4 gene as they likely
contain additional T cell markers. Comparing these TS IDs should help you to define frequent CD4
neighbors (very likely related to TCR signaling cascade). Thereby, your request should be:

> res <- getSignatures(field = "gene", value = "CD4")

371 signatures were found for the request:
gene = CD4

This gene is found in 371 TS (with the current database release). Obtaining associated gene lists
would be time consuming and would not be as specific as expected. Indeed, the CD4 marker is also
expressed by macrophages. Another solution would be to search for TS containing two T-cell markers
(CD4 and CD3E for instance) and to exclude (using the NOT operator) those containing the CD14
marker (a macrophages marker). The syntax should be the following:

> res <- getSignatures(field = "gene", value = "CD4 & CD3E & !CD14")

55 signatures were found for the request:
gene = CD4 & CD3E & !CD14

4

http://tagc.univ-mrs.fr/tbrowser

In the same way, one can try to exclude TS containing B-cells markers by discarding those containing
the CD19 or IGHM markers. The resulting query would be the following:

> res <- getSignatures(field = "gene", value = "CD4 & CD3E & !(CD19 | IGHM)")

33 signatures were found for the request:
gene = CD4 & CD3E & !(CD19 | IGHM)

2.2 Finding the biological contexts in which sets of genes are co-expressed

As mentioned by Lacroix et al., ESR1, GATA3, XBP1 are co-expressed in breast cancer tumors (see
[4]). This assumption can be easily verified using RTools4TB . For instance, in the following examples,
we fetch transcriptional signature IDs that contain ”XBP1 & ESR1 & GATA3”. Next the getTBInfo
function is used to retrieve the experiment description from which they are derived (here only for TS
ID ”3DE64836D”).

> TS <- getSignatures(field = "gene", value = "XBP1 & ESR1 & GATA3")

14 signatures were found for the request:
gene = XBP1 & ESR1 & GATA3

> head(TS)

[1] "0F2635383" "3DE64836D" "59A18E225" "8059848B4" "84E5E1077" "8F69864F9"

> a <- getTBInfo(field = "signature", value = "3DE64836D", verbose = FALSE)

> exp <- a["Experiment", 1]

> info <- getTBInfo(field = "experiment", value = exp, verbose = TRUE)

A result was found for : experiment = GSE7904
Name = GSE7904
Organism = Homo sapiens
PMID = NULL
Nb. samples = 62
Title = Expression data from human breast tissue
Summary = bulk breast tumor RNA from patientAbstract: Sporadic basal-like

cancers (BLC) are a distinct class of human breast cancers that are
phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient
tumors, most BLC lack markers of a normal inactive X chromosome (Xi).
Duplication of the active X chromosome and loss of Xi characterized almost
half of BLC cases tested. Others contained biparental but
nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These
abnormalities did not lead to a global increase in X chromosome
transcription but were associated with overexpression of a small subset of
X chromosomal genes. Other, equally aneuploid, but non-BLC rarely
displayed these X chromosome abnormalities. These results suggest that X
chromosome abnormalities contribute to the pathogenesis of BLC, both
inherited and sporadic.total 62 sample incudes 43 tumor, 7 normal breast
and 12 normal organelle

As expected the transcriptional signature ”3DE64836D” correspond to a breast cancer tumor anal-
ysis. This is also true for the other TS (not shown).

5

2.3 Finding transcriptional neighbors

One interesting feature of RTools4TB its ability to find genes frequently co-expressed with the input list.
Indeed, results from a request to TBrowserDB can be displayed as a graph using the createGraph4BioC
function. This function retrieves the list of TS that verify the constrain (here ”XBP1 & ESR1 &
GATA3”). A list of gene falling in at least one of the TS is next computed. A gene-gene matrix M
is created that will record for each pair of gene the number of time they were observed in the same
signature. In the following example, only a subset of this adjacency matrix (containing genes falling in
a significant proportion of signatures, prop=80%) is used to create a graph.

> library(biocGraph)

> adjMat <- createGraph4BioC(request = "XBP1 & ESR1 & GATA3", prop = 80)

> g1 <- new("graphAM", adjMat = adjMat)

> nodes(g1)

[1] "C6orf211" "GREB1" "WWP1" "JMJD2B" "KRT18" "RNF103"
[7] "ROGDI" "SLC22A5" "THSD4" "NAT1" "SLC39A6" "ABAT"
[13] "CA12" "CIRBP" "LOC400451" "MAGED2" "MCCC2" "MLPH"
[19] "ANXA9" "ERBB4" "FOXA1" "ESR1" "GATA3" "TBC1D9"
[25] "XBP1"

> nAt <- makeNodeAttrs(g1)

> nAt$fillcolor[match(rownames(as.matrix(nAt$fillcolor)), c("GATA3",

+ "XBP1", "ESR1"), nomatch = F) != 0] <- "green"

> nAt$fillcolor[match(rownames(as.matrix(nAt$fillcolor)), c("TBC1D9",

+ "FOXA1"), nomatch = F) != 0] <- "yellow"

> plot(g1, "fdp", nodeAttrs = nAt)

As expected the list of gene contains ”XBP1 & ESR1 & GATA3” but also FOXA1/HNF3A that was
reported to be co expressed with ESR1 in several experiments (see [4]). Other genes are also particularly
relevant such as TBC1D9/MDR1 (Multidrug Resistance 1) (figure 1).

2.4 Vizualising expression matrix.

The TS ”3DE64836D” is related to experiment ”GSE7904”. In this experiments, the authors were
interested in analysing several classes of breast cancer tumors especially ”Sporadic basal-like cancers”.

> a <- getTBInfo(field = "signature", value = "3DE64836D", verbose = FALSE)

> exp <- a["Experiment", 1]

> info <- getTBInfo(field = "experiment", value = exp, verbose = TRUE)

A result was found for : experiment = GSE7904
Name = GSE7904
Organism = Homo sapiens
PMID = NULL
Nb. samples = 62
Title = Expression data from human breast tissue
Summary = bulk breast tumor RNA from patientAbstract: Sporadic basal-like

cancers (BLC) are a distinct class of human breast cancers that are
phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient
tumors, most BLC lack markers of a normal inactive X chromosome (Xi).

6

C6orf211

GREB1

WWP1

JMJD2B

KRT18

RNF103

ROGDI

SLC22A5THSD4

NAT1

SLC39A6

ABAT

CA12

CIRBP

LOC400451

MAGED2

MCCC2

MLPH

ANXA9

ERBB4

FOXA1

ESR1

GATA3

TBC1D9

XBP1

Figure 1: A graph containing ”XBP1 & ESR1 & GATA3” together with their most frequent transcrip-
tional neighbors.

7

Duplication of the active X chromosome and loss of Xi characterized almost
half of BLC cases tested. Others contained biparental but
nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These
abnormalities did not lead to a global increase in X chromosome
transcription but were associated with overexpression of a small subset of
X chromosomal genes. Other, equally aneuploid, but non-BLC rarely
displayed these X chromosome abnormalities. These results suggest that X
chromosome abnormalities contribute to the pathogenesis of BLC, both
inherited and sporadic.total 62 sample incudes 43 tumor, 7 normal breast
and 12 normal organelle

The samples that were used are the following.

> sampleInfo <- getTBInfo(field = "samples", value = "3DE64836D")

> head(sampleInfo[, 1:2])

sampleID Title
[1,] "GSM194397" "Basal (T118)"
[2,] "GSM194398" "Basal (T134)"
[3,] "GSM194399" "Basal (T140)"
[4,] "GSM194400" "Basal (T141)"
[5,] "GSM194401" "Basal (T146)"
[6,] "GSM194402" "Basal (T147)"

Using the getExpressionMatrix function, the expression matrix for signature ”3DE64836D” can
be fetched in order to visualize the expression profile of ESR1, GATA3 and XBP1 tumors compare to
normal breast tissues.

> em <- getExpressionMatrix(signatureID = "3DE64836D")

Downloading expression matrix for transcriptional signature: 3DE64836D (62 samples x 143 probes)

> class(em)

[1] "data.frame"

The getExpressionMatrix function returns a data.frame. The first two columns store probe IDs
and gene symbols. Additional columns contain corresponding expression values (figure 2).

> library(RColorBrewer)

> col <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> geneNames <- paste(em[, 1], em[, 2], sep = "||")

> em <- as.matrix(em[, -c(1, 2)])

> ind <- match(colnames(em), sampleInfo[, 1])

> colnames(em) <- sampleInfo[ind, 2]

> row <- rep(1, nrow(em))

> ind <- grep("(XBP1)|(ESR1)|(GATA3)", geneNames, perl = TRUE)

> row[ind] <- 2

> rc <- rainbow(2, start = 0, end = 0.3)

> rc <- rc[row]

> col <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> split <- strsplit(colnames(em), " (", fixed = TRUE)

> pheno <- unlist(lapply(split, "[", 1))

8

> pheno <- as.factor(pheno)

> levels(pheno) <- 1:5

> cc <- rainbow(5, start = 0, end = 0.3)

> cc <- cc[pheno]

> heatmap(em, col = col, RowSideColors = rc, ColSideColors = cc,

+ labRow = geneNames, cexRow = 0.3)

B
as

al
 (

T
14

7)
B

as
al

 (
T

13
0)

B
as

al
 (

T
14

0)
B

as
al

 (
T

13
7)

B
as

al
 (

T
12

3)
B

as
al

 (
T

13
4)

B
as

al
 (

T
14

6)
B

as
al

 (
T

12
9)

B
as

al
 (

T
11

6)
B

R
C

A
1

(T
15

2)
B

as
al

 (
T

21
)

B
as

al
 (

T
13

3)
B

R
C

A
1

(T
91

1)
B

R
C

A
1

(T
63

6)
B

as
al

 (
T

14
1)

B
as

al
 (

T
11

8)
B

as
al

 (
T

14
4)

B
as

al
 (

T
56

)
B

as
al

 (
T

38
)

B
as

al
 (

T
14

9)
B

as
al

 (
T

14
3)

N
or

m
al

 o
rg

an
el

le
 (

N
E

1)
N

or
m

al
 o

rg
an

el
le

 (
N

E
6)

N
or

m
al

 o
rg

an
el

le
 (

N
E

10
)

N
or

m
al

 o
rg

an
el

le
 (

N
E

8)
N

or
m

al
 o

rg
an

el
le

 (
N

E
7)

N
or

m
al

 o
rg

an
el

le
 (

N
E

5)
N

or
m

al
 o

rg
an

el
le

 (
N

E
2)

N
or

m
al

 o
rg

an
el

le
 (

N
E

9)
N

or
m

al
 o

rg
an

el
le

 (
N

E
3)

N
on

−
B

LC
 (

T
17

8)
N

on
−

B
LC

 (
T

37
)

N
on

−
B

LC
 (

T
14

5)
N

on
−

B
LC

 (
T

11
7)

N
on

−
B

LC
 (

T
11

9)
N

on
−

B
LC

 (
T

11
5)

B
R

C
A

1
(T

15
1)

N
on

−
B

LC
 (

T
4)

N
on

−
B

LC
 (

T
16

2)
N

on
−

B
LC

 (
T

84
)

N
on

−
B

LC
 (

T
17

5)
N

or
m

al
 o

rg
an

el
le

 (
N

E
4)

N
or

m
al

 o
rg

an
el

le
 (

N
E

81
7)

N
or

m
al

 o
rg

an
el

le
 (

N
E

76
8)

N
on

−
B

LC
 (

T
41

)
N

or
m

al
 b

re
as

t (
B

83
)

N
or

m
al

 b
re

as
t (

B
87

)
N

or
m

al
 b

re
as

t (
B

69
)

N
or

m
al

 b
re

as
t (

B
58

)
N

or
m

al
 b

re
as

t (
B

60
)

N
on

−
B

LC
 (

T
81

)
N

on
−

B
LC

 (
T

18
3)

N
on

−
B

LC
 (

T
16

1)
N

on
−

B
LC

 (
T

30
)

N
on

−
B

LC
 (

T
44

)
N

on
−

B
LC

 (
T

50
)

N
on

−
B

LC
 (

T
18

8)
N

on
−

B
LC

 (
T

92
)

N
on

−
B

LC
 (

T
74

)
N

on
−

B
LC

 (
T

73
)

N
or

m
al

 b
re

as
t (

B
42

)
N

or
m

al
 b

re
as

t (
B

64
)

220192_x_at||SPDEF
213441_x_at||SPDEF
214404_x_at||SPDEF
225981_at||C17orf28
228969_at||AGR2
229150_at||MLPH
237086_at||FOXA1
209602_s_at||GATA3
209604_s_at||GATA3
209603_at||GATA3
228303_at||GALNT6
219956_at||GALNT6
219734_at||SIDT1
200711_s_at||SKP1A
208764_s_at||ATP5G2
209696_at||FBP1
224907_s_at||SH3GLB2
229599_at||LOC440335
217979_at||TSPAN13
232322_x_at||STARD10
211729_x_at||BLVRA
205221_at||HGD
236496_at||DEGS2
211712_s_at||ANXA9
210085_s_at||ANXA9
226120_at||TTC8
226752_at||TMEM157
232612_s_at||ATG16L1
203789_s_at||SEMA3C
225092_at||NUP88
233198_at||LOC92497
212510_at||GPD1L
201276_at||RAB5B
200794_x_at||DAZAP2
227052_at||N/A
228708_at||GPER
226921_at||UBR1
213627_at||MAGED2
208682_s_at||MAGED2
202908_at||WFS1
215867_x_at||CA12
214164_x_at||CA12
203963_at||CA12
204508_s_at||CA12
218211_s_at||MLPH
204667_at||FOXA1
209173_at||AGR2
212960_at||TBC1D9
212956_at||TBC1D9
235144_at||N/A
200670_at||XBP1
226192_at||N/A
211621_at||AR
226197_at||N/A
201924_at||AFF1
222348_at||MAST4
229030_at||N/A
204623_at||TFF3
205009_at||TFF1
228241_at||AGR3
202752_x_at||SLC7A8
216092_s_at||SLC7A8
226506_at||THSD4
222835_at||THSD4
203476_at||TPBG
227198_at||AFF3
1565034_s_at||MLL
214053_at||ERBB4
205074_at||SLC22A5
209623_at||MCCC2
209459_s_at||ABAT
209460_at||ABAT
229580_at||N/A
202088_at||SLC39A6
205862_at||GREB1
227550_at||LOC143381
205225_at||ESR1
221874_at||KIAA1324
225327_at||KIAA1370
221139_s_at||CSAD
227671_at||XIST
225496_s_at||SYTL2
232914_s_at||SYTL2
233955_x_at||CXXC5
222996_s_at||CXXC5
224516_s_at||CXXC5
218518_at||C5orf5
208873_s_at||REEP5
226742_at||N/A
232307_at||MED13L
203431_s_at||RICS
213885_at||TRIM3
208072_s_at||DGKD
232668_at||FAM110B
232381_s_at||DNAH5
226961_at||PRR15
1556666_a_at||TTC6
222445_at||SLC39A9
227232_at||EVL
217838_s_at||EVL
229381_at||C1orf64
213234_at||KIAA1467
233498_at||ERBB4
244696_at||AFF3
232286_at||AFF3
1566880_at||AFF3
215304_at||THSD4
234222_at||THSD4
232944_at||THSD4
232855_at||THSD4
204031_s_at||PCBP2
221012_s_at||TRIM8
201170_s_at||BHLHB2
201236_s_at||BTG2
200810_s_at||CIRBP
200811_at||CIRBP
223204_at||C4orf18
226030_at||ACADSB
40093_at||BCAM
203571_s_at||C10orf116
212359_s_at||KIAA0913
204294_at||AMT
225629_s_at||ZBTB4
213266_at||76P
207170_s_at||LETMD1
205794_s_at||NOVA1
219197_s_at||SCUBE2
228554_at||N/A
222760_at||ZNF703
241577_at||AFF3
205059_s_at||IDUA
203117_s_at||USP52
36499_at||CELSR2
227833_s_at||MBD6
221880_s_at||LOC400451
222125_s_at||PH−4
204811_s_at||CACNA2D2
212495_at||JMJD2B
212496_s_at||JMJD2B
227081_at||DNALI1
205186_at||DNALI1
205471_s_at||DACH1
228915_at||DACH1

Figure 2: The expression matrix corresponding to signature ”3DE64836D”.

Of note, the plotGeneExpProfiles is a high level function to visualize gene expression levels in a
signature (figure 3).

> plotGeneExpProfiles(data = em, X11 = FALSE)

3 Creating transcriptional signatures from a user defined data
set using DBF-MCL algorithm.

When analyzing a noisy dataset, one is interested in isolating dense regions as they are populated with
genes/elements that display weak distances to their nearest neighbors (i.e. strong profile similarities).
To isolate these regions DBF-MCL computes, for each gene/element, the distance with its kth nearest
neighbor (DKNN). In order to define a critical DKNN value that will depend on the dataset and below
which a gene/element will be considered as falling in a dense area, DBF-MCL computes simulated
DKNN values by using an empirical randomization procedure. Given a dataset containing n genes

9

0 10 20 30 40 50 60

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Samples

In
te

ns
ity

profile_signature.png

Figure 3: Gene expression profiles of signatures containing XBP1, ESR1 and GATA3: the centroid is
highlighted in green.

and p samples, a simulated DKNN value is obtained by sampling n distance values from the gene-gene
distance matrix D and by extracting the kth-smallest value. This procedure is repeated n times to
obtain a set of simulated DKNN values S. Computed distributions of simulated DKNN are used to
compute a FDR value for each observed DKNN value. The critical value of DKNN is the one for which
a user-defined FDR value (typically 10%) is observed. Genes with DKNN value below this threshold
are selected and used to construct a graph. In this graph, edges are constructed between two genes
(nodes) if one of them belongs to the k-nearest neighbors of the other. Edges are weighted based on
the respective coefficient of correlation (i.e., similarity) and the graph obtained is partitioned using the
Markov CLustering algorithm (MCL).

3.1 Installation

With the current implementation DBFMCL function works only on UNIX-like plateforms. MCL is
required and can be installed using your package manager or using the following command lines pasted
in a terminal:

Download the latest version of mcl
(the library has been tested successfully with the 06-058 version)
wget http://micans.org/mcl/src/mcl-latest.tar.gz
Uncompress and install mcl
tar xvfz mcl-latest.tar.gz
cd mcl-xx-xxx
./configure
make
sudo make install
You should get mcl in your path
mcl -h

10

3.2 Examples

We will search for transcriptional signatures in a subset of the ALL dataset.

> library(ALL)

> data(ALL)

> sub <- exprs(ALL)[1:3000,]

First, we will normalize the data set using the doNormalScore function. This function performs
normal score transformation of a matrix. The doNormalScore transforms each sample to follow a
normal distribution (with mean = 0 and sd = 1). Alternatively, users may also use other normalization
routines such as : doRankTransformation or limma::normalizeQuantiles.

> subNorm <- doNormalScore(sub)

The DBFMCL function allows one to extract TS from a data set. Its behaviour is controlled by several
arguments.

> args(DBFMCL)

function (data = NULL, filename = NULL, path = ".", name = NULL,
distance.method = c("pearson", "spearman", "euclidean", "spm",

"spgm"), clustering = TRUE, silent = FALSE, verbose = TRUE,
k = 150, random = 3, memory.used = 1024, fdr = 10, inflation = 2,
set.seed = 123, returnRank = FALSE)

NULL

The DBFMCL function accepts a tab-delimited file (argument filename), an expressionSet, a data.frame
or a matrix (argument data) as input. The input data must contain an expression matrix with gene as
rows and samples as columns. Note that space characters inside gene names are not allowed (as they
are not supported by the mcl command-line program).

The two main parameters of DBF-MCL are k that controls the size of the neighborhood and the
inflation (range 1.1 to 5) which controls the way the underlying graph is partitioned. In the following
example, the neighborhood size (k) is set to 150 and the MCL inflation parameters is set to 2.0 (default
MCL setting). Most generally these default parameters give very good results on microarray datasets.
For a detailed discussion about these parameters please read the section ”Performances of DBF-MCL
on Complex9RN200 dataset” in the article describing TranscriptomeBrowser stategy [1]. Morevover,
in our example, the distance method is set to ”pearson” although the ”spearman” (that is the default
method for computing TS in the TranscriptomeBrowser projet) also give very relevant results. Note
that additional distance, including ”euclidean” and two mixtures of pearson” and ”spearman” (”spm”
and ”spgm”) are also available.

> res <- DBFMCL(subNorm, distance.method = "pearson", memory = 512)

The results are stored in an instance of class DBFMCLresult.

> class(res)

[1] "DBFMCLresult"
attr(,"package")
[1] "RTools4TB"

> res

11

An object of class DBFMCLresult
Name: exprs
Memory used: 1140412
Number of samples: 128
Number of informative genes: 1053
Number of clusters: 3
This object contains the following informations:
- name
- data
- cluster
- size
- center
- parameters
* distanceMethod = pearson
* k = 150
* random = 3
* fdr = 10
* set.seed = 123
* inflation = 2

The expression matrix is stored in the data slot. This matrix contains only genes detected as
informative (that is falling into a cluster).

> head(res@data[, 1:2])

01005 01010
1153_f_at 1.14383543 1.14401685
1025_g_at -0.35119623 -0.39702813
31604_at 0.21453883 0.35885572
1455_f_at -0.06960184 0.01066486
1908_at 0.31048075 0.42706913
1492_f_at 0.27323570 0.44352271

The partitioning results are stored in the cluster slot.

> slotNames(res)

[1] "name" "data" "cluster" "size" "center"
[6] "parameters"

Here, 3 TS were found.

> res@size

[1] 498 461 94

The following instruction can be used to get the expression matrix corresponding to the first TS.

> res@data[res@cluster == 1,]

The high level function plotGeneExpProfiles can be used to visualize, for instance, gene expression
profiles corresponding to the first signature.

> plotGeneExpProfiles(res, sign = 1)

To stored the partitioning results onto disk (as a tab-delimited file), use the writeDBFMCLresult
function as show below.

> writeDBFMCLresult(res, filename.out = "ALL.sign.txt")

12

References

[1] Lopez F.,Textoris J., Bergon A., Didier G., Remy E., Granjeaud S., Imbert J. , Nguyen C. and
Puthier D. TranscriptomeBrowser: a powerful and flexible toolbox to explore productively the tran-
scriptional landscape of the Gene Expression Omnibus database. PLoSONE, 2008;3(12):e4001.

[2] Sherman BT, Huang DW, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC,
Lempicki RA. DAVID Knowledgebase: A Gene-centered Database Integrating Heterogeneous Gene
Annotation Resources to Facilitate High-throughput Gene Functional Analysis. BMC Bioinformat-
ics. 2007 Nov 2;8(1):426.

[3] Van Dongen S. (2000) A cluster algorithm for graphs. National Research Institute for Mathematics
and Computer Science in the 1386-3681.

[4] Lacroix M, Leclercq G. About GATA3, HNF3A, and XBP1, three genes co-expressed with the
oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol Cell Endocrinol. 2004 Apr 30;219(1-
2):1-7.

13

	Overview
	Fetching transcriptional signatures from TBrowserDB
	The getSignatures function
	Request without logical operators (gene list)
	Request using logical operators

	Finding the biological contexts in which sets of genes are co-expressed
	Finding transcriptional neighbors
	Vizualising expression matrix.

	Creating transcriptional signatures from a user defined data set using DBF-MCL algorithm.
	Installation
	Examples

