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1 Overview

TranscriptomeBrowser (TBrowser, http://tagc.univ-mrs.fr/tbrowser) hosts a large collection of
transcriptional signatures (TS) automatically extracted from the Gene Expression Omnibus (GEO)
database. Each GEO experiment (GSE) was processed so that a subset of the original expression
matrix containing the most relevant/informative genes was kept and organized into a set of homogeneous
signatures [1]. Each signature was tested for functional enrichment using annotations terms obtained
from numerous ontologies or curated databases (Gene Ontology, KEGG, BioCarta, Swiss-Prot, BBID,
SMART, NIH Genetic Association DB, COG/KOG...) using the DAVID knowledgebase [2].
RTools4TB is a library for data mining of public microarray data. RTools4TB can be helpful (i) to
define the biological contexts (i.e, experiments) in which a set of genes are co-expressed and (ii) to define
their most frequent neighbors [1]. The RTools4TB package also implements the DBF-MCL algorithm
(”Density Based Filtering And Markov Clustering”) that can be used for fast and automated partitioning
of microarray data. DBF-MCL is a tree-step adaptative algorithm that (i) find elements located in dense
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areas (ie. clusters) (ii) uses selected items to construct a graph and (iii) performs graph partitioning
using MCL [3]. Note that a UNIX-like systems is required to use DBF-MCL.

2 Fetching transcriptional signatures from TBrowserDB

2.1 The getSignatures function

Connection to the TranscriptomeBrowser database (TBrowserDB) relies on the getSignatures, get-
ExpressionMatrix and getTBInfo functions.

Basically, the getSignatures function can be used to retrieve transcriptional signature IDs using
gene symbol(s), probe ID(s), experiment ID, microarray platform ID or annotation term(s) as input.
This is controled by the ”field” argument.

> library(RTools4TB)

> args(getSignatures)

function (field = c("gene", "probe", "platform", "experiment",
"annotation"), value = NULL, qValue = NULL, nbMin = NULL,
verbose = TRUE, save = FALSE)

NULL

Once the field argument is set, one need to provide a value as input. For instance the following
query use gene name as input with value ”PCNA”.

> res <- getSignatures(field = "gene", value = "PCNA")

> head(res)

Transcriptional signature IDs can also be obtained by selecting the relevant experiment IDs, platform
IDs and probe IDs. To get all transcriptional signature IDs associated with GSE2004 experiment, one
should use the following syntax:

> res <- getSignatures(field = "experiment", value = "GSE2004")

23 signatures were found for the request:
GSE = GSE2004

To get all signatures obtained on GPL96 platform, use the following syntax:

> res <- getSignatures(field = "platform", value = "GPL96")

3377 signatures were found for the request:
GPL = GPL96

Moreover, as all signatures were tested for functional enrichment using keywords from the DAVID
knowledgebase these terms can be used to query the database (DAVID collects a wide range of an-
notation from several databases including: GO, BIOCARTA, KEGG, PANTHER, BBID,...) . The
annotationList dataset contains the annotations terms.

> data(annotationList)

> names(annotationList)

[1] "Keyword" "TableName"
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> attach(annotationList)

> annotationList[1:4, ]

Keyword TableName
1 1.RBphosphoE2F BBID
2 100.MAPK_signaling_cascades BBID
3 104.Insulin_signaling BBID
4 105.Signaling_glucose_uptake BBID

> table(TableName)

TableName
BBID BIOCARTA COG_KOG_ONTOLOGY
57 468 22

CYTOBAND GENETIC_ASSOCIATION_DB GOTERM_BP_ALL
526 68 1273

GOTERM_CC_ALL GOTERM_MF_ALL INTERPRO_NAME
328 639 777

KEGG_PATHWAY KEGG_REACTION OMIM_PHENOTYPE
334 78 10

PANTHER_PATHWAY PFAM_NAME PIR_HOMOLOGY_DOMAIN
104 531 86

PIR_SUPERFAMILY_NAME PUBMED_ID SMART_NAME
160 4887 235

SP_PIR_KEYWORDS
568

The selected terms can be used to select TS IDs. In this case, user should define a q-value. For
instance one can select TS enriched in genes related to the ”HSA04110:CELL CYCLE” KEGG pathway
with q-value below 10e−20.

> cc <- getSignatures(field = "annotation", value = "HSA04110:CELL CYCLE",

+ qValue = 20)

66 signatures were found for the request:
annotation = HSA04110:CELL CYCLE

Of note, one can also search for TS IDs containing genes located in the same chromosomal region. For
instance one can select TS IDs enriched in genes located in the ”8q” region which is frequently amplified
or deleted in tumors. This will point out the biological contexts in which sets of genes located in the
8q region share the same expression profile, suggesting amplifications or deletions in some biological
samples.

> query <- paste(grep("^8q", Keyword, val = T), collapse = "|")

> query

[1] "8q13|8q21|8q21.11|8q21.2|8q22.1|8q22.3|8q24|8q24.13|8q24.3"

> cc <- getSignatures(field = "annotation", value = query, qValue = 10)

4 signatures were found for the request:
annotation = 8q13|8q21|8q21.11|8q21.2|8q22.1|8q22.3|8q24|8q24.13|8q24.3

Next sections will introduce more complexe queries using sets of genes with or without Boolean
operators.
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2.1.1 Request without logical operators (gene list)

When field is set to ”gene” or ”probe”, user can perform a request using a list of item separated by
blanks. These blanks are interpreted as the OR logical operators. In this case, all signatures containing
at least one gene of the list will be returned. To select more informative signatures we suggest to use
the nbMin argument that will select signatures containing at least nbMin genes out of the list.

The following examples search for signatures containing at least 2 genes of the input list (CD3D,
CD3E and CD4).

> gl <- getSignatures(field = "gene", value = "CD3D CD3E CD4",

+ nbMin = 2)

150 signatures were found for the request:
gene = CD3D CD3E CD4 and nbMin = 2

> head(gl)

Signature nb.Genes
1 03AD63FB5 2
2 050367D10 2
3 053ECFACF 3
4 05F2203B7 2
5 0C0A8F888 2
6 0D2EA9D52 2

2.1.2 Request using logical operators

The ”value” argument of getSignatures may contain the following Boolean operators (see help section
on TranscriptomeBrowser web site for more informations, http://tagc.univ-mrs.fr/tbrowser)

• & : AND

• | : OR

• ! : NOT , (used in conjonction with &)

This is a convenient way to create relevant queries. Suppose your field of interest is related to T-cell
activation. You could be interested in retrieving all TS IDs that contain the CD4 gene as they likely
contain additional T cell markers. Comparing these TS IDs should help you to define frequent CD4
neighbors (very likely related to TCR signaling cascade). Thereby, your request should be:

> res <- getSignatures(field = "gene", value = "CD4")

371 signatures were found for the request:
gene = CD4

This gene is found in 371 TS (with the current database release). Obtaining associated gene lists
would be time consuming and would not be as specific as expected. Indeed, the CD4 marker is also
expressed by macrophages. Another solution would be to search for TS containing two T-cell markers
(CD4 and CD3E for instance) and to exclude (using the NOT operator) those containing the CD14
marker (a macrophages marker). The syntax should be the following:

> res <- getSignatures(field = "gene", value = "CD4 & CD3E & !CD14")

55 signatures were found for the request:
gene = CD4 & CD3E & !CD14
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In the same way, one can try to exclude TS containing B-cells markers by discarding those containing
the CD19 or IGHM markers. The resulting query would be the following:

> res <- getSignatures(field = "gene", value = "CD4 & CD3E & !(CD19 | IGHM)")

33 signatures were found for the request:
gene = CD4 & CD3E & !(CD19 | IGHM)

2.2 Finding the biological contexts in which sets of genes are co-expressed

As mentioned by Lacroix et al., ESR1, GATA3, XBP1 are co-expressed in breast cancer tumors (see
[4]). This assumption can be easily verified using RTools4TB . For instance, in the following examples,
we fetch transcriptional signature IDs that contain ”XBP1 & ESR1 & GATA3”. Next the getTBInfo
function is used to retrieve the experiment description from which they are derived (here only for TS
ID ”3DE64836D”).

> TS <- getSignatures(field = "gene", value = "XBP1 & ESR1 & GATA3")

14 signatures were found for the request:
gene = XBP1 & ESR1 & GATA3

> head(TS)

[1] "0F2635383" "3DE64836D" "59A18E225" "8059848B4" "84E5E1077" "8F69864F9"

> a <- getTBInfo(field = "signature", value = "3DE64836D", verbose = FALSE)

> exp <- a["Experiment", 1]

> info <- getTBInfo(field = "experiment", value = exp, verbose = TRUE)

A result was found for : experiment = GSE7904
Name = GSE7904
Organism = Homo sapiens
PMID = NULL
Nb. samples = 62
Title = Expression data from human breast tissue
Summary = bulk breast tumor RNA from patientAbstract: Sporadic basal-like

cancers (BLC) are a distinct class of human breast cancers that are
phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient
tumors, most BLC lack markers of a normal inactive X chromosome (Xi).
Duplication of the active X chromosome and loss of Xi characterized almost
half of BLC cases tested. Others contained biparental but
nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These
abnormalities did not lead to a global increase in X chromosome
transcription but were associated with overexpression of a small subset of
X chromosomal genes. Other, equally aneuploid, but non-BLC rarely
displayed these X chromosome abnormalities. These results suggest that X
chromosome abnormalities contribute to the pathogenesis of BLC, both
inherited and sporadic.total 62 sample incudes 43 tumor, 7 normal breast
and 12 normal organelle

As expected the transcriptional signature ”3DE64836D” correspond to a breast cancer tumor anal-
ysis. This is also true for the other TS (not shown).
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2.3 Finding transcriptional neighbors

One interesting feature of RTools4TB its ability to find genes frequently co-expressed with the input list.
Indeed, results from a request to TBrowserDB can be displayed as a graph using the createGraph4BioC
function. This function retrieves the list of TS that verify the constrain (here ”XBP1 & ESR1 &
GATA3”). A list of gene falling in at least one of the TS is next computed. A gene-gene matrix M
is created that will record for each pair of gene the number of time they were observed in the same
signature. In the following example, only a subset of this adjacency matrix (containing genes falling in
a significant proportion of signatures, prop=80%) is used to create a graph.

> library(biocGraph)

> adjMat <- createGraph4BioC(request = "XBP1 & ESR1 & GATA3", prop = 80)

> g1 <- new("graphAM", adjMat = adjMat)

> nodes(g1)

[1] "C6orf211" "GREB1" "WWP1" "JMJD2B" "KRT18" "RNF103"
[7] "ROGDI" "SLC22A5" "THSD4" "NAT1" "SLC39A6" "ABAT"
[13] "CA12" "CIRBP" "LOC400451" "MAGED2" "MCCC2" "MLPH"
[19] "ANXA9" "ERBB4" "FOXA1" "ESR1" "GATA3" "TBC1D9"
[25] "XBP1"

> nAt <- makeNodeAttrs(g1)

> nAt$fillcolor[match(rownames(as.matrix(nAt$fillcolor)), c("GATA3",

+ "XBP1", "ESR1"), nomatch = F) != 0] <- "green"

> nAt$fillcolor[match(rownames(as.matrix(nAt$fillcolor)), c("TBC1D9",

+ "FOXA1"), nomatch = F) != 0] <- "yellow"

> plot(g1, "fdp", nodeAttrs = nAt)

As expected the list of gene contains ”XBP1 & ESR1 & GATA3” but also FOXA1/HNF3A that was
reported to be co expressed with ESR1 in several experiments (see [4]). Other genes are also particularly
relevant such as TBC1D9/MDR1 (Multidrug Resistance 1) (figure 1).

2.4 Vizualising expression matrix.

The TS ”3DE64836D” is related to experiment ”GSE7904”. In this experiments, the authors were
interested in analysing several classes of breast cancer tumors especially ”Sporadic basal-like cancers”.

> a <- getTBInfo(field = "signature", value = "3DE64836D", verbose = FALSE)

> exp <- a["Experiment", 1]

> info <- getTBInfo(field = "experiment", value = exp, verbose = TRUE)

A result was found for : experiment = GSE7904
Name = GSE7904
Organism = Homo sapiens
PMID = NULL
Nb. samples = 62
Title = Expression data from human breast tissue
Summary = bulk breast tumor RNA from patientAbstract: Sporadic basal-like

cancers (BLC) are a distinct class of human breast cancers that are
phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient
tumors, most BLC lack markers of a normal inactive X chromosome (Xi).
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Figure 1: A graph containing ”XBP1 & ESR1 & GATA3” together with their most frequent transcrip-
tional neighbors.
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Duplication of the active X chromosome and loss of Xi characterized almost
half of BLC cases tested. Others contained biparental but
nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These
abnormalities did not lead to a global increase in X chromosome
transcription but were associated with overexpression of a small subset of
X chromosomal genes. Other, equally aneuploid, but non-BLC rarely
displayed these X chromosome abnormalities. These results suggest that X
chromosome abnormalities contribute to the pathogenesis of BLC, both
inherited and sporadic.total 62 sample incudes 43 tumor, 7 normal breast
and 12 normal organelle

The samples that were used are the following.

> sampleInfo <- getTBInfo(field = "samples", value = "3DE64836D")

> head(sampleInfo[, 1:2])

sampleID Title
[1,] "GSM194397" "Basal (T118)"
[2,] "GSM194398" "Basal (T134)"
[3,] "GSM194399" "Basal (T140)"
[4,] "GSM194400" "Basal (T141)"
[5,] "GSM194401" "Basal (T146)"
[6,] "GSM194402" "Basal (T147)"

Using the getExpressionMatrix function, the expression matrix for signature ”3DE64836D” can
be fetched in order to visualize the expression profile of ESR1, GATA3 and XBP1 tumors compare to
normal breast tissues.

> em <- getExpressionMatrix(signatureID = "3DE64836D")

Downloading expression matrix for transcriptional signature: 3DE64836D ( 62 samples x 143 probes)

> class(em)

[1] "data.frame"

The getExpressionMatrix function returns a data.frame. The first two columns store probe IDs
and gene symbols. Additional columns contain corresponding expression values (figure 2).

> library(RColorBrewer)

> col <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> geneNames <- paste(em[, 1], em[, 2], sep = "||")

> em <- as.matrix(em[, -c(1, 2)])

> ind <- match(colnames(em), sampleInfo[, 1])

> colnames(em) <- sampleInfo[ind, 2]

> row <- rep(1, nrow(em))

> ind <- grep("(XBP1)|(ESR1)|(GATA3)", geneNames, perl = TRUE)

> row[ind] <- 2

> rc <- rainbow(2, start = 0, end = 0.3)

> rc <- rc[row]

> col <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> split <- strsplit(colnames(em), " (", fixed = TRUE)

> pheno <- unlist(lapply(split, "[", 1))
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> pheno <- as.factor(pheno)

> levels(pheno) <- 1:5

> cc <- rainbow(5, start = 0, end = 0.3)

> cc <- cc[pheno]

> heatmap(em, col = col, RowSideColors = rc, ColSideColors = cc,

+ labRow = geneNames, cexRow = 0.3)
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220192_x_at||SPDEF
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211712_s_at||ANXA9
210085_s_at||ANXA9
226120_at||TTC8
226752_at||TMEM157
232612_s_at||ATG16L1
203789_s_at||SEMA3C
225092_at||NUP88
233198_at||LOC92497
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Figure 2: The expression matrix corresponding to signature ”3DE64836D”.

Of note, the plotGeneExpProfiles is a high level function to visualize gene expression levels in a
signature (figure 3).

> plotGeneExpProfiles(data = em, X11 = FALSE)

3 Creating transcriptional signatures from a user defined data
set using DBF-MCL algorithm.

When analyzing a noisy dataset, one is interested in isolating dense regions as they are populated with
genes/elements that display weak distances to their nearest neighbors (i.e. strong profile similarities).
To isolate these regions DBF-MCL computes, for each gene/element, the distance with its kth nearest
neighbor (DKNN). In order to define a critical DKNN value that will depend on the dataset and below
which a gene/element will be considered as falling in a dense area, DBF-MCL computes simulated
DKNN values by using an empirical randomization procedure. Given a dataset containing n genes
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Figure 3: Gene expression profiles of signatures containing XBP1, ESR1 and GATA3: the centroid is
highlighted in green.

and p samples, a simulated DKNN value is obtained by sampling n distance values from the gene-gene
distance matrix D and by extracting the kth-smallest value. This procedure is repeated n times to
obtain a set of simulated DKNN values S. Computed distributions of simulated DKNN are used to
compute a FDR value for each observed DKNN value. The critical value of DKNN is the one for which
a user-defined FDR value (typically 10%) is observed. Genes with DKNN value below this threshold
are selected and used to construct a graph. In this graph, edges are constructed between two genes
(nodes) if one of them belongs to the k-nearest neighbors of the other. Edges are weighted based on
the respective coefficient of correlation (i.e., similarity) and the graph obtained is partitioned using the
Markov CLustering algorithm (MCL).

3.1 Installation

With the current implementation DBFMCL function works only on UNIX-like plateforms. MCL is
required and can be installed using your package manager or using the following command lines pasted
in a terminal:

# Download the latest version of mcl
# (the library has been tested successfully with the 06-058 version)
wget http://micans.org/mcl/src/mcl-latest.tar.gz
# Uncompress and install mcl
tar xvfz mcl-latest.tar.gz
cd mcl-xx-xxx
./configure
make
sudo make install
# You should get mcl in your path
mcl -h
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3.2 Examples

We will search for transcriptional signatures in a subset of the ALL dataset.

> library(ALL)

> data(ALL)

> sub <- exprs(ALL)[1:3000, ]

First, we will normalize the data set using the doNormalScore function. This function performs
normal score transformation of a matrix. The doNormalScore transforms each sample to follow a
normal distribution (with mean = 0 and sd = 1). Alternatively, users may also use other normalization
routines such as : doRankTransformation or limma::normalizeQuantiles.

> subNorm <- doNormalScore(sub)

The DBFMCL function allows one to extract TS from a data set. Its behaviour is controlled by several
arguments.

> args(DBFMCL)

function (data = NULL, filename = NULL, path = ".", name = NULL,
distance.method = c("pearson", "spearman", "euclidean", "spm",

"spgm"), clustering = TRUE, silent = FALSE, verbose = TRUE,
k = 150, random = 3, memory.used = 1024, fdr = 10, inflation = 2,
set.seed = 123, returnRank = FALSE)

NULL

The DBFMCL function accepts a tab-delimited file (argument filename), an expressionSet, a data.frame
or a matrix (argument data) as input. The input data must contain an expression matrix with gene as
rows and samples as columns. Note that space characters inside gene names are not allowed (as they
are not supported by the mcl command-line program).

The two main parameters of DBF-MCL are k that controls the size of the neighborhood and the
inflation (range 1.1 to 5) which controls the way the underlying graph is partitioned. In the following
example, the neighborhood size (k) is set to 150 and the MCL inflation parameters is set to 2.0 (default
MCL setting). Most generally these default parameters give very good results on microarray datasets.
For a detailed discussion about these parameters please read the section ”Performances of DBF-MCL
on Complex9RN200 dataset” in the article describing TranscriptomeBrowser stategy [1]. Morevover,
in our example, the distance method is set to ”pearson” although the ”spearman” (that is the default
method for computing TS in the TranscriptomeBrowser projet) also give very relevant results. Note
that additional distance, including ”euclidean” and two mixtures of pearson” and ”spearman” (”spm”
and ”spgm”) are also available.

> res <- DBFMCL(subNorm, distance.method = "pearson", memory = 512)

The results are stored in an instance of class DBFMCLresult.

> class(res)

[1] "DBFMCLresult"
attr(,"package")
[1] "RTools4TB"

> res
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An object of class DBFMCLresult
Name: exprs
Memory used: 1140412
Number of samples: 128
Number of informative genes: 1053
Number of clusters: 3
This object contains the following informations:
- name
- data
- cluster
- size
- center
- parameters
* distanceMethod = pearson
* k = 150
* random = 3
* fdr = 10
* set.seed = 123
* inflation = 2

The expression matrix is stored in the data slot. This matrix contains only genes detected as
informative (that is falling into a cluster).

> head(res@data[, 1:2])

01005 01010
1153_f_at 1.14383543 1.14401685
1025_g_at -0.35119623 -0.39702813
31604_at 0.21453883 0.35885572
1455_f_at -0.06960184 0.01066486
1908_at 0.31048075 0.42706913
1492_f_at 0.27323570 0.44352271

The partitioning results are stored in the cluster slot.

> slotNames(res)

[1] "name" "data" "cluster" "size" "center"
[6] "parameters"

Here, 3 TS were found.

> res@size

[1] 498 461 94

The following instruction can be used to get the expression matrix corresponding to the first TS.

> res@data[res@cluster == 1, ]

The high level function plotGeneExpProfiles can be used to visualize, for instance, gene expression
profiles corresponding to the first signature.

> plotGeneExpProfiles(res, sign = 1)

To stored the partitioning results onto disk (as a tab-delimited file), use the writeDBFMCLresult
function as show below.

> writeDBFMCLresult(res, filename.out = "ALL.sign.txt")
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