Working with the ShortRead Package

James Bullard, Kasper Daniel Hansen

January 1, 2010

In this document we show how to use the Genominator package with ShortRead. In this document,
we will demonstrate some analysis — maybe even some useful first steps when analyzing RNA-Seq data.

> require(Genominator)
> require(ShortRead)
> require(yeastRNASeq)

We will use some data sets from the yeastRNASeq data package. Lets first see what this package
contains:

> data(package = "yeastRNASeq")[[3]1[, c("Item", "Title")]

Item
[1,] "geneLevelData"
2,] "yeastAligned"
3,] "yeastAnno"
Title
[1,] "Yeast gene-level counts from: Lee et al. PloS Genetics 2008."
[2,] "AlignedRead list"
3,] "Yeast Annotation"

At first, we will focus on the AlignedRead list. This object is a list of 4 AlignedRead’s, each
representing the alignment of .5 million reads. The 4 elements of the list corresponds to 2 samples
(mut, wt) each sequenced on 2 lanes.

> data("yeastAligned")
> names (yeastAligned)

[1] "mut_1_£f" "mut_2_f" "wt_1_f" ‘"wt_2_f"
> yeastAligned[[1]]

class: AlignedRead
length: 423318 reads; width: 26 cycles

chromosome: Scchr05 Scchrl5 ... Scchr08 Scchri3
position: 541317 885627 ... 488228 667296
strand: - + ... - +

alignQuality: NumericQuality
alignData varLabels: similar mismatch

The first step is to make a database:

> eData <- importFromAlignedReads (yeastAligned, chrMap
filename = "my.db", tablename = "raw", overwrite

+

> head(eData)

chr location strand mut_1_f mut_2_f wt_1_f wt_2_f

1

O© 0 NO O W N =
e e e

[
o

3888
3970
3988
4101
4242
4271
4400
4428
4447
4553

1

1
NA
NA
NA

1

1
NA

1
NA
NA

NA
NA

1
NA
NA
NA
NA
NA
NA

1

NA

1
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA

1
NA
NA

1
NA

1
NA

levels (chromosome (yeastAligned[[1
TRUE)

importFromAlignedReads takes exactly such a (named) list of AlignedReads and aggregates each

experiment and finally joins them together.

Certainly, the most cryptic portion of this call is the chromosome map (the chrMap argument).
The Genominator package requires that all chromosomes be stored as integer values. Therefore, we
must to convert the “chromosome names” to integers. We do this by specifying a rule described as a
named vector of integer values, like

> levels(chromosome (yeastAligned[[1]]))

[1] "Scchr01" "Scchr02" "Scchr03" "Scchr04" "Scchr05" "Scchr06"
[7] "Scchr07" "Scchr08" "Scchr09" "Scchr10" "Scchrll" "Scchri2"

[13] "Scchr13" "Scchri14" "Scchri1b" "Scchri6" "Scmito"

Sometimes the call to levels is not enough and we need to do some reordering and perhaps the

addition of extra chromosomes.

The result is an ExpData object which has been aggregated over, i.e. each position in the genome
which was represented by > 0 reads at its 5" most end will have that number of reads. Note how we
deal with reads mapping to the reverse strand of the genome (by using the 5 end of the read as its
location).

We can now take advantage of all of the functionality of the Genominator package, using (parts
of) the yeast annotation from SGD.

> data(yeastAnno)
> head(yeastAnno)

ensembl_gene_id chromosome_name start_position end_position strand

W N -

YHRO55C
YPR161C
YOL138C
YDR395W

VIII
XVI
XV
Iv

214535
864445
61325
1263316

214720 -1
866418 -1

65350 -1
1266150 1

@]

YGR129W
YPR165W

gene_biotype

O WN -

protein_coding
protein_coding
protein_coding
protein_coding
protein_coding
protein_coding

VII
XVI

750405 7510562 1
875364 875993 1

Once again, we have to deal with the fact that people like to represent chromosomes in different
ways. In this case, SGD represents chromosomes with Roman numerals. Additionally, we prepare
the annotation object to be consumable by the Genominator functions by making sure that we have
columns start, end present and that strand takes values in {—1,0,1}.

end strand

-1
-1
-1

yeastAnno$chr <- match(yeastAnno$chr, c(as.character(as.roman(1:16)),

yeastAnno$start <- yeastAnno$start_position

yeastAnno <- yeastAnno[, c("chr", "start", "end", "strand",

gene_biotype
protein_coding
protein_coding
protein_coding
protein_coding
protein_coding

>
+ "MT", "2-micron"))
>
> yeastAnno$end <- yeastAnno$end_position
> rownames (yeastAnno) <- yeastAnno$ensembl
>
+ "gene_biotype")]
> head(yeastAnno)
chr start
YHRO55C 8 214535 214720
YPR161C 16 864445 866418
YOL138C 15 61325 65350
YDR395W 4 1263316 1266150
YGR129W 7 750405 751052
YPR165W 16 875364 875993

1
1
1

protein_coding

With this amount of processing we are now able to do some high level analysis. First we compute,
for each annotated region, the number of reads hitting that region. Note that we may double count
reads, if two regions overlap (which they often do in yeast).

> geneCounts <- summarizeByAnnotation(eData, yeastAnno,
+ ignoreStrand = TRUE)
> head(geneCounts)

YHRO55C
YPR161C
YOL138C
YDR395W
YGR129W
YPR165W

0
38
31
55
29

189

0
39
33
52
26

180

0
35
40
47

5

151

mut_1_f mut_2_f wt_1_f wt_2_f

0
34
26
47

5

180

We can see how “good” the replicates are by assessing whether it fits the Poisson model of constant
gene expression across lanes with variable sequencing effort.

> plot (regionGoodnessOfFit (geneCounts, groups = gsub("_[0-9]_f",
+ "", colnames(geneCounts))), chisq = TRUE)

mut wt

15

10
|

observed quantiles
0 2 4 6 8 10
|
observed quantiles

I I I I I I I I
0 5 10 15 0 5 10 15

theoretical quantiles theoretical quantiles

