
The Genominator User Guide

James Bullard, Kasper Daniel Hansen

January 1, 2010

1 Introduction

Overview

The Genominator package provides an interface to storing and retrieving genomic data, together with
some additional functionality aimed at high-throughput sequence data. The intent is that retrieval
and summarization will be fast enough to enable online experimentation with the data.

We have used to package to analyze tiling arrays and (perhaps more appropriate) RNA-Seq data
consisting of more than 400 million reads.

The canonical use case at the core of the package is summarizing the data over a large number of
genomic regions. The standard example is for each annotated exon in human, count the number of
reads that lands in that exon, for all experimental samples.

Data is stored in a SQLite database, and as such the package makes it possible to work with very
large datasets in limited memory. However, working with SQLite databases is limited by I/O (disk
speed), and substantial performance gains are possible by using a fast disk.

Limitations

While data may be stored in different ways using the experimental data model described below,
typically (for sequencing data) we associate each read to a single location in the genome. This means
that the package does not currently support paired-end reads, nor dealing with reads that span exon-
exon junctions. Work is being done to include these important cases.

As mentioned above, the package uses a SQLite backend and the speed of its functionality is
primarily limited by disk speed, which is unlike many other R packages. There is no gain in having
multiple cores available and there is substantial slow down when accessing the data over a networked
drive.

2 Data model

The core functionality of the package is the analysis of experimental data using genomic annotation,
such as counting the number of reads falling in annotated exons. In the following we describe what
we mean by experimental and annotation data.

1

2.1 Experimental data 2 DATA MODEL

2.1 Experimental data

The package utilizes RSQLite to store the data corresponding to an experiment. The SQL data model
is:

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, [name NUMERIC]*

Specifically it means that each data unit has an associated (non-empty) genomic location triplet,
namely chr (chromosome coded as an integer), strand (one of -1, 0, or 1 representing reverse strand,
no strand information, and forward strand respectively) as well as a location. We also allow an
unlimited number of additional numeric variables. (The requirement that the additional variables be
numeric is purely an optimization.) There is no requirement that the location triplet (chr, strand,
location) only occurs once in the data.

Examples are

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, chip_1 REAL, chip_2 REAL

chr INTEGER, strand INTEGER (-1,0,1), location INTEGER, counts INTEGER

The first data model could describe data from two tiling arrays, and in that case there would
typically only be a single occurrence of each location triplet (chr, strand, location).

The second data model could describe

• data from a single sequencing experiment, each row corresponding to a read, such as

chr, strand, location, counts

1, 1, 1, 1

1, 1, 1, 1

1, 1, 2, 1

(here two reads map to the same location)

• data from a single sequencing experiment, but where the reads have been aggregated such that
each row corresponds to the number of reads mapped to that location.

chr, strand, location, counts

1, 1, 1, 2

1, 1, 1, 1

2.2 Annotation data

Unlike experimental data, which is stored in an SQLite database, we represent annotation as an R
data.frame with the following columns:

chr integer, strand integer (-1L,0L,1L), start integer, end integer, [name class]*

As in the experimental data representation, strand information is encoded as -1 for Reverse/Minus
Strand, 0 for No Strand Information Available/Relevant, and 1 for Forward/Plus Strand. Each row
is typically called a region (or region of interest, abbreviated ROI).

Since each region is consecutive, a transcript with multiple exons needs to be represented by
multiple regions and one would typically have a column indicating transcript id, linking the different
regions together. This data model is very similar to the genomic feature format (GFF).

A common example is

chr integer, strand integer (-1L,0L,1L), start integer, end integer, feature factor

2

3 OVERVIEW

3 Overview

There are 3 broad classes of functions within Genominator : functions that import and transform
data, functions that retrieve and summarize data and finally functions that operate on retrieved data
(focused on analysis of next generation sequencing data).

In the next two sections we will generate experimental data and annotation data for use in later
examples.

3.1 Creating Experimental Data

We are going to walk through a very simple example using simulated experimental data to present the
data import pipeline. This example uses a verbose setting of TRUE to illustrate activities performed
in the SQLite databases. The example data will be used later in the vignette to illustrate other aspects
of the package.

For an example of importing “real” next generation sequence data, see the companion vignette on
working with the ShortRead package.

The data can be thought of as next generation sequencing data (N number of reads), in an
organism with 16 chromosomes and a small number of annotated regions (K regions).

> library(Genominator)

> options(verbose = TRUE)

> set.seed(123)

> N <- 100000L

> K <- 100L

> df <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

+ location = sample(1:1000, size = N, replace = TRUE),

+ strand = sample(c(1L, -1L), size = N, replace = TRUE))

> head(df)

chr location strand

1 5 603 -1

2 13 23 -1

3 7 821 -1

4 15 37 -1

5 16 236 1

6 1 871 -1

> eDataRaw <- importToExpData(df, filename = "my.db", tablename = "ex_tbl",

+ overwrite = TRUE)

Writing table: 0.187 sec

Creating index: 0.217 sec

> eDataRaw

table: ex_tbl

database file: my.db

index columns: chr location strand

3

3.1 Creating Experimental Data 3 OVERVIEW

mode: w

schema:

chr location strand

"INTEGER" "INTEGER" "INTEGER"

> head(eDataRaw)

chr location strand

1 1 1 -1

2 1 1 -1

3 1 1 -1

4 1 1 -1

5 1 1 -1

6 1 1 -1

7 1 1 -1

8 1 1 1

9 1 1 1

10 1 2 -1

The df object contains unsorted reads. eDataRaw is an example of an ExpData object, the core
object in Genominator. Such an object essentially points to a specific table in a specific database
(in SQLite a database is a file). The data in eDataRaw is ordered along the genome (unlike df),
but there may be multiple rows with the same genomic location. The argument overwrite = TRUE

indicates that if the table already exists in the database, overwrite it. This can be handy for scripts
and vignettes.

The eDataRaw has a number of slots related to an internal bookkeeping of database connection.
The index columns indicates what columns of the database are indexed. For “normal” uses this will
always be (chr, location, strand). The mode indicates whether the database is in read or write mode
(write implies read).

In a normal pipeline, the first thing we do is aggregate the reads. With default settings, this means
counting the number of reads starting at each (chr, location, strand). The resulting database has only
one row with a given (chr, location, strand).

> eData <- aggregateExpData(eDataRaw, tablename = "counts_tbl",

+ deleteOriginal = FALSE, overwrite = TRUE)

Creating table: counts_tbl: 0.002 sec

inserting: 0.085 sec

creating index: 0.064 sec

> eData

table: counts_tbl

database file: my.db

index columns: chr location strand

mode: w

schema:

chr location strand counts

"INTEGER" "INTEGER" "INTEGER" "INTEGER"

4

3.1 Creating Experimental Data 3 OVERVIEW

> head(eData)

chr location strand counts

1 1 1 -1 7

2 1 1 1 2

3 1 2 -1 1

4 1 2 1 2

5 1 3 -1 3

6 1 3 1 4

7 1 4 -1 4

8 1 4 1 3

9 1 5 -1 1

10 1 5 1 5

The return object is (as always) an ExpData object pointing to the table that was created. Note
the addition of the counts column.

The input ExpData object points to table ex_tbl in database my.db. The output ExpData object
(currently) always uses the same database as the input object, possibly with a different name (in
this case counts_tbl). All functions that manipulate databases have the arguments overwrite and
deleteOriginal. If deleteOriginal is TRUE, the original table (in this case ex_tbl) is deleted. If
tablename is NULL (default), the function does a destructive in-place modification of the table.

It is possible to break ExpData objects. For example, if we had used the aggregateExpData func-
tion with deleteOriginal = TRUE, the table that eDataRaw points to would have been deleted. Or, if
the function had been used with tablename = NULL (default), both eDataRaw and eData would point
to the same table in the database, but the schema recorded in eDataRaw during instantiation would
be out of date because it would not include the counts column. While this may seem problematic,
it has not been cause for much concern. Remember, that ExpData objects are very cheap to create,
so if something seems to break, delete and recreate it. With a bit of familiarity, this problem can be
avoided. In general, we highly recommend carrying out the creation/manipulation of data in a script
separate from the analysis, since creation/manipulation requires write access, whereas analysis is read
only.

Each ExpData object has a mode that indicates whether the database is in read or write, which
also implies read, mode. The eDataRaw and eData objects created above had a ’write’ mode. To
prevent unwanted modifications to the database, we will instantiate a new eData object in ’read’ only
mode.

> eData <- ExpData("my.db", tablename = "counts_tbl")

> eData

table: counts_tbl

database file: my.db

index columns: chr location strand

mode: r

schema:

chr location strand counts

"INTEGER" "INTEGER" "INTEGER" "INTEGER"

> head(eData)

5

3.2 Creating Annotation 3 OVERVIEW

chr location strand counts

1 1 1 -1 7

2 1 1 1 2

3 1 2 -1 1

4 1 2 1 2

5 1 3 -1 3

6 1 3 1 4

7 1 4 -1 4

8 1 4 1 3

9 1 5 -1 1

10 1 5 1 5

This used the constructor function ExpData, which is a standard way to instantiate ExpData objects
in a new session.

It is possible to use the normal [and $ operators on ExpData objects (although they do not have
rownames). This is rarely necessary, and the return objects may be massive.

> head(eData$chr)

chr

1 1

2 1

3 1

4 1

5 1

6 1

> eData[1:3, 1:2]

chr location

1 1 1

2 1 1

3 1 2

3.2 Creating Annotation

We now create a suitable annotation object. As described in earlier sections, annotation consists of
consecutive genomic regions that may or may not be overlapping.

> annoData <- data.frame(chr = sample(1:16, size = K, replace = TRUE),

+ strand = sample(c(1L, -1L), size = K, replace = TRUE),

+ start = (st <- sample(1:1000, size = K, replace = TRUE)),

+ end = st + rpois(K, 75), feature = c("gene", "intergenic")[sample(1:2,

+ size = K, replace = TRUE)])

> rownames(annoData) <- paste("elt", 1:K, sep = ".")

> head(annoData)

6

4 CREATING AND MANAGING DATA

chr strand start end feature

elt.1 13 -1 460 521 gene

elt.2 4 -1 332 405 gene

elt.3 13 1 177 236 gene

elt.4 3 1 390 472 gene

elt.5 15 1 130 203 gene

elt.6 1 1 885 964 intergenic

In this example, the annoData object needs to have distinct row names in order to maintain the link
between annotation and returned data structures from the Genominator API.

Also the strand column needs to have values in {−1, 0, 1}, and the chr column needs to have
integer values. When you access “real” annotation, you will often need a post-processing step where
the annotation gets massaged into this format. See the additional vignette on working with the
ShortRead package for a real-life example.

4 Creating and managing data

For illustrative purposes, we generate another set of data:

> df2 <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

+ location = sample(1:1000, size = N, replace = TRUE),

+ strand = sample(c(1L, -1L), size = N, replace = TRUE))

> eData2 <- aggregateExpData(importToExpData(df2, filename = "my.db",

+ tablename = "ex2", overwrite = TRUE))

Writing table: 0.174 sec

Creating index: 0.218 sec

Creating table: __tmp_9508: 0.003 sec

inserting: 0.084 sec

droping original table: 0.011 sec

renaming table: 0.003 sec

creating index: 0.068 sec

as well as re-doing the aggregation performed previously (with a new tablename)

> eData1 <- aggregateExpData(importToExpData(df, filename = "my.db",

+ tablename = "ex1", overwrite = TRUE))

Writing table: 0.171 sec

Creating index: 0.219 sec

Creating table: __tmp_7215: 0.002 sec

inserting: 0.084 sec

droping original table: 0.011 sec

renaming table: 0.003 sec

creating index: 0.069 sec

7

4.1 Aggregation 4 CREATING AND MANAGING DATA

4.1 Aggregation

Aggregation refers to aggregation over rows of the database. This is typically used for sequencing
data and is typically employed in order to go from a “one row, one read” type representation to a “one
row, one genomic location with an associated number of reads”. The default arguments creates a new
column counts using an “aggregator” that is the number of times a genomic location occurs in the
data. Aggregation has also been discussed in an earlier section.

4.2 Merging

It is natural to store a number of experimental replicates in columns of a table. However, it is often
the case that we receive the data in chunks over time, and that merging new values with old values
is not trivial. For this reason we provide a joinExpData function to bind two tables together.

Essentially, merging consists of placing two (or more) columns next to each other. It is (somewhat)
clear that (in general) it makes the most sense to merge two datasets when each dataset has only a
single occurrence of each genomic location. Otherwise, how would we deal with/interpret the case
where a genomic location occurs multiple times in each dataset? For that reason, joining two datasets
typically happens after they have been aggregated.

It is possible to merge/join the datasets in R and then subsequently use the import facility to
store the resulting object in a database. In general, that approach is less desirable because 1) it is
slow(er) and 2) it requires all datasets to be present in memory.

> eDataJoin <- joinExpData(list(eData1, eData2), fields = list(ex1 = c(counts = "counts_1"),

+ ex2 = c(counts = "counts_2")), tablename = "allcounts")

Creating union: 0.047 sec

Left outer join with table ex1: 0.095 sec

Left outer join with table ex2: 0.103 sec

Indexing: 0.072 sec

> head(eDataJoin)

chr location strand counts_1 counts_2

1 1 1 -1 7 2

2 1 1 1 2 3

3 1 2 -1 1 2

4 1 2 1 2 5

5 1 3 -1 3 3

6 1 3 1 4 3

7 1 4 -1 4 NA

8 1 4 1 3 1

9 1 5 -1 1 3

10 1 5 1 5 1

In this example both eData1 and eData2 have a column named counts that we rename in the
resulting object using the fields argument. Also missing values are introduced when the locations
in one object are not present in the other. Finally, the joinExpData function supports joining an
arbitrary number of ExpData objects.

We can examine the result using summarizeExpData (described later)

8

4.3 Collapsing 4 CREATING AND MANAGING DATA

> summarizeExpData(eDataJoin, fxs = c("total", "avg", "count"))

fetching summary: 0.024 sec

total(counts_1) total(counts_2) avg(counts_1) avg(counts_2)

1.000000e+05 1.000000e+05 3.267760e+00 3.267547e+00

count(counts_1) count(counts_2)

3.060200e+04 3.060400e+04

Because of the way we store the data, the “total” column will be the total number of read, the “count”
column will be the number of bases where a read starts, and the “avg” column will be average number
of reads at a given genomic location (removing the genomic locations that were not sequenced).

4.3 Collapsing

Another common operation is collapsing data across columns. One use would be to join to experiments
where the same sample was sequenced. One advantage of collapsing the data in this case is speed.

Collapsing is most often done using summation (the default):

> head(collapseExpData(eDataJoin, tablename = "collapsed",

+ collapse = "sum", overwrite = TRUE))

CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand INTEGER, COL)

creating table: 0.003 sec

INSERT INTO collapsed SELECT chr, location, strand, CAST(TOTAL(counts_1)AS INTEGER)+CAST(TOTAL(counts_2)AS INTEGER) FROM allcounts GROUP BY chr,location,strand

inserting data: 0.076 sec

creating index: 0.065 sec

chr location strand COL

1 1 1 -1 9

2 1 1 1 5

3 1 2 -1 3

4 1 2 1 7

5 1 3 -1 6

6 1 3 1 7

7 1 4 -1 4

8 1 4 1 4

9 1 5 -1 4

10 1 5 1 6

But it could also be done using an “average” or a “weighted average” (weighted according to
sequencing effort).

> head(collapseExpData(eDataJoin, tablename = "collapsed",

+ collapse = "weighted.avg", overwrite = TRUE))

fetching summary: 0.014 sec

CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand INTEGER, COL)

creating table: 0.003 sec

INSERT INTO collapsed SELECT chr, location, strand, TOTAL(counts_1) * 0.5+TOTAL(counts_2) * 0.5 FROM allcounts GROUP BY chr,location,strand

9

5 INTERFACE

inserting data: 0.087 sec

creating index: 0.067 sec

chr location strand COL

1 1 1 -1 4.5

2 1 1 1 2.5

3 1 2 -1 1.5

4 1 2 1 3.5

5 1 3 -1 3.0

6 1 3 1 3.5

7 1 4 -1 2.0

8 1 4 1 2.0

9 1 5 -1 2.0

10 1 5 1 3.0

> head(collapseExpData(eDataJoin, tablename = "collapsed",

+ collapse = "avg", overwrite = TRUE))

CREATE TABLE collapsed (chr INTEGER, location INTEGER, strand INTEGER, COL)

creating table: 0.003 sec

INSERT INTO collapsed SELECT chr, location, strand, (TOTAL(counts_1)+TOTAL(counts_2))/2 FROM allcounts GROUP BY chr,location,strand

inserting data: 0.087 sec

creating index: 0.065 sec

chr location strand COL

1 1 1 -1 4.5

2 1 1 1 2.5

3 1 2 -1 1.5

4 1 2 1 3.5

5 1 3 -1 3.0

6 1 3 1 3.5

7 1 4 -1 2.0

8 1 4 1 2.0

9 1 5 -1 2.0

10 1 5 1 3.0

In this case setting collapse equal to avg or weighted.avg respectively yields the exact same
result, since the two experiments have the same number of reads.

5 Interface

In this section we describe the core functionality of the Genominator package.
We will use two examples: one ExpData consisting of a single (aggregated) experiment and one

ExpData consisting of two aggregated, joined experiments.

> eData <- ExpData("my.db", tablename = "counts_tbl", mode = "r")

> eDataJoin <- ExpData("my.db", tablename = "allcounts",

+ mode = "r")

10

5.1 Summarizing experimental data 5 INTERFACE

5.1 Summarizing experimental data

We can use the function summarizeExpData to summarize ExpData objects. This function does not
utilize annotation, so the summarization is in some sense “global”. The call to generate the total
number of counts, i.e. the number of reads, in column “counts” is

> ss <- summarizeExpData(eData, what = "counts")

fetching summary: 0.01 sec

> ss

[1] 1e+05

The what argument is present in many of the following functions. It refers to which columns are
being used, and in general the default depends on the type of function. If the function summarizes
data, the default is “all columns, except the genomic location columns”, whereas if the function
retrieves data, the default is “all columns”.

We can customize the summary by specifying the name of any SQLite function (www.sqlite.org/lang_aggfunc.html)
in the fxs argument

> summarizeExpData(eData, what = "counts", fxs = c("MIN",

+ "MAX"))

fetching summary: 0.013 sec

MIN(counts) MAX(counts)

1 14

This yields the maximum/minimum number of reads mapped to a single location. The minimum
number of reads is not zero because we only store locations associated with reads.

5.2 Selecting a region

We can access genomic data in a single genomic region using the function getRegion.

> reg <- getRegion(eData, chr = 2L, strand = -1L, start = 100L,

+ end = 105L)

SELECT * FROM counts_tbl WHERE chr = 2 AND (strand IN (-1) OR strand = 0) AND location between 100 AND 105 ORDER BY chr,location,strand

fetching region query: 0.005 sec

> class(reg)

[1] "data.frame"

> reg

chr location strand counts

1 2 100 -1 3

2 2 101 -1 5

3 2 102 -1 4

4 2 103 -1 6

5 2 104 -1 3

6 2 105 -1 4

It is possible exclude either start or end in which case the default values are 0 and 1e12.

11

http://www.sqlite.org/lang_aggfunc.html

5.3 Using annotation with experimental data 5 INTERFACE

5.3 Using annotation with experimental data

The two previous sections show useful functions, but in general we want to summarize data over many
genomic regions simultaneously, in order to

• Summarize regions (means, lengths, sums, etc)

• Fit models on each region

• Perform operations over classes of regions (genes, intergenic regions, ncRNAs)

There are essentially two different strategies for this: retrieve the data as a big object and then use
R functions to operate on the data (e.g. splitByAnnotation) or perform some operation on the
different regions in the database (e.g. summarizeByAnnotation). The first approach is more flexible,
but also slower and requires more memory. The second approach is faster, but limited to operations
that can be expressed in SQL.

First, we demonstrate how to summarize over regions of interest. Here we are going to compute
the SUM and COUNT of each region, which tell us the total number of sequencing reads at each
location and the number of unique locations that were read respectively.

> head(summarizeByAnnotation(eData, annoData, what = "counts",

+ fxs = c("COUNT", "TOTAL"), bindAnno = TRUE))

writing regions table: 0.018 sec

SELECT __regions__.id, COUNT(counts), TOTAL(counts) FROM __regions__ LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.031 sec

chr strand start end feature COUNT(counts) TOTAL(counts)

elt.1 13 -1 460 521 gene 58 193

elt.2 4 -1 332 405 gene 69 219

elt.3 13 1 177 236 gene 57 190

elt.4 3 1 390 472 gene 82 258

elt.5 15 1 130 203 gene 70 235

elt.6 1 1 885 964 intergenic 78 241

The result of summarizeByAnnotation is a data.frame. We use bindAnno = TRUE in order to
keep the annotation as part of the result, which is often very useful.

The fxs argument takes the names of SQLite functions, see www.sqlite.org/lang_aggfunc.html.
One important note regarding summation: the standard SQL function SUM handles the sum of only
missing values, which in R is expressed as sum(NA), differently from the SQLite specific function
TOTAL. In particular, the SUM function returns a missing value and the TOTAL function returns a zero.
This is relevant when summarizing over a genomic region containing no reads in one experiment, but
reads in another experiment.

This next example computes, the number of reads mapping to the region for each annotated region,
ignoring strand. Ignoring strand might be the right approach if the protocol does not retain strand
information (e.g. the current standard protocol for Illumina RNA-Seq).

> head(summarizeByAnnotation(eDataJoin, annoData, , fxs = c("SUM"),

+ bindAnno = TRUE, preserveColnames = TRUE, ignoreStrand = TRUE))

12

http://www.sqlite.org/lang_aggfunc.html

5.3 Using annotation with experimental data 5 INTERFACE

writing regions table: 0.02 sec

SELECT __regions__.id, SUM(counts_1), SUM(counts_2) FROM __regions__ LEFT OUTER JOIN allcounts ON __regions__.chr = allcounts.chr AND allcounts.location BETWEEN __regions__.start AND __regions__.end GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.049 sec

chr strand start end feature counts_1 counts_2

elt.1 13 -1 460 521 gene 417 390

elt.2 4 -1 332 405 gene 469 434

elt.3 13 1 177 236 gene 367 367

elt.4 3 1 390 472 gene 519 518

elt.5 15 1 130 203 gene 463 489

elt.6 1 1 885 964 intergenic 501 484

Essentially, this output is the input to a simple differential expression analysis.
Note that if two regions in the annotation overlap, data falling in the overlap will be part of the

end result for each region.
We can produce summarizes by category using the splitBy argument.

> res <- summarizeByAnnotation(eData, annoData, what = "counts",

+ fxs = c("TOTAL", "COUNT"), splitBy = "feature")

writing regions table: 0.021 sec

SELECT __regions__.id, TOTAL(counts), COUNT(counts) FROM __regions__ LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.03 sec

> class(res)

[1] "list"

> lapply(res, head)

$gene

TOTAL(counts) COUNT(counts)

elt.1 193 58

elt.2 219 69

elt.3 190 57

elt.4 258 82

elt.5 235 70

elt.7 301 86

$intergenic

TOTAL(counts) COUNT(counts)

elt.6 241 78

elt.8 283 86

elt.9 221 68

elt.11 206 62

elt.13 228 82

elt.16 235 72

Finally, we might want to join the relevant annotation to the summaries using the bindAnno

argument.

13

5.3 Using annotation with experimental data 5 INTERFACE

> res <- summarizeByAnnotation(eData, annoData, what = "counts",

+ fxs = c("TOTAL", "COUNT"), splitBy = "feature", bindAnno = TRUE)

writing regions table: 0.02 sec

SELECT __regions__.id, TOTAL(counts), COUNT(counts) FROM __regions__ LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.031 sec

> lapply(res, head)

$gene

chr strand start end feature TOTAL(counts) COUNT(counts)

elt.1 13 -1 460 521 gene 193 58

elt.2 4 -1 332 405 gene 219 69

elt.3 13 1 177 236 gene 190 57

elt.4 3 1 390 472 gene 258 82

elt.5 15 1 130 203 gene 235 70

elt.7 2 1 24 109 gene 301 86

$intergenic

chr strand start end feature TOTAL(counts) COUNT(counts)

elt.6 1 1 885 964 intergenic 241 78

elt.8 16 -1 729 820 intergenic 283 86

elt.9 6 1 656 726 intergenic 221 68

elt.11 14 -1 550 612 intergenic 206 62

elt.13 1 -1 116 201 intergenic 228 82

elt.16 8 -1 419 492 intergenic 235 72

(Both of these example might require ignoreStrand = TRUE in a real world application.)
Unfortunately, the summarizeByAnnotation function is only able to utilize the very small set of

SQLite functions, essentially limiting the function to computing very simple summaries.
We will now examine the splitByAnnotation function that splits the data according to annotation

and returns the“raw”data. The return object of this function may be massive depending on the size of
the data and the size of the annotation. In general we advise to do as much computation as possible
using SQLite (essentially using summarizeByAnnotation), but sometimes it is necessary to access
the raw data. Leaving aside the problems with the size of the return object, splitByAnnotation is
reasonably fast.

We start by only splitting on the annotated regions of type “gene”.

> dim(annoData[annoData$feature %in% "gene",])

[1] 51 5

> a <- splitByAnnotation(eData, annoData[annoData$feature %in%

+ "gene",])

writing region table: 0.021 sec

SELECT counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY __regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table: 0.022 sec

SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

count query: 0.013 sec

performing split: 0.001 sec

14

5.3 Using annotation with experimental data 5 INTERFACE

> class(a)

[1] "list"

> length(a)

[1] 51

> names(a)[1:10]

[1] "elt.1" "elt.2" "elt.3" "elt.4" "elt.5" "elt.7" "elt.10"

[8] "elt.12" "elt.14" "elt.15"

> head(a[[1]])

chr location strand counts

1 13 460 -1 4

2 13 461 -1 5

3 13 462 -1 2

4 13 463 -1 3

5 13 464 -1 4

6 13 465 -1 2

There are several notes here. For starters, the return object is named according to the rownames
of the annotation data. Also, only annotated regions with data are represented in the return object, so
in general the return object does not have an element for each annotated region. We provide several
convenience functions for operating on the results of splitByAnnotation, which are discussed later.

Now we wish to compute a trivial function over the counts, such as a quantile.

> sapply(a, function(x) {

+ quantile(x[, "counts"], 0.9)

+ })[1:10]

elt.1.90% elt.2.90% elt.3.90% elt.4.90% elt.5.90% elt.7.90%

5 5 6 5 5 6

elt.10.90% elt.12.90% elt.14.90% elt.15.90%

6 5 5 5

Often we wish to use the annotation information when operating on the data in each region. The
applyMapped function makes this easy by appropriately matching up the annotation and the data.
Essentially, this function ensures that you are applying the right bit of annotation to the correct chunk
of data.

> applyMapped(a, annoData, FUN = function(region, anno) {

+ counts <- sum(region[, "counts"])

+ length <- anno$end - anno$start + 1

+ counts/length

+ })[1:10]

15

5.3 Using annotation with experimental data 5 INTERFACE

$elt.1

[1] 3.112903

$elt.2

[1] 2.959459

$elt.3

[1] 3.166667

$elt.4

[1] 3.108434

$elt.5

[1] 3.175676

$elt.7

[1] 3.5

$elt.10

[1] 3.405063

$elt.12

[1] 2.207317

$elt.14

[1] 3.068493

$elt.15

[1] 3.090909

This example computes the average number of reads per base, taking into account that bases without
data exists. Note that FUN needs to be a function of two arguments.

What we see is that some of our regions are not present. This is a byproduct of the fact that some
of our regions have no data within their bounds. One can successfully argue that the result of the
example above ought to include such regions with a value of zero (see below for this).

When our data sets are large, it is often more convenient and significantly faster to return only
some columns.

> sapply(splitByAnnotation(eData, annoData, what = "counts"),

+ median)[1:10]

writing region table: 0.019 sec

SELECT counts_tbl.counts , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY __regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table: 0.034 sec

SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

count query: 0.022 sec

performing split: 0.001 sec

16

5.3 Using annotation with experimental data 5 INTERFACE

elt.1 elt.2 elt.3 elt.4 elt.5 elt.6 elt.7 elt.8 elt.9 elt.10

3 3 3 3 3 3 3 3 3 3

Often we wish to “fill” in missing regions. In the case of a coding sequence there may be bases that
have no reads, and so these bases will not appear in our resulting object. We can “expand” a region
to include these bases by filling in 0 reads for them. There are different ways to do this expansion.
For convenience, data are stratified by strand. Therefore expansion will produce a list-of-lists, where
each sublist has possibly two elements corresponding to each strand. If the original annotation query
is stranded, then expansion will produce a list, where each sublist only has one element. Finally,
we provide a feature to collapse across strand for the common use case of combining reads occurring
on either strand within the region. In this case the return value is a list, where each element is an
expanded matrix representing the reads that occurred on either strand.

> x1 <- splitByAnnotation(eData, annoData, expand = TRUE,

+ ignoreStrand = TRUE)

writing region table: 0.021 sec

SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand, counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end ORDER BY __regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table: 0.073 sec

SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end GROUP BY __regions__.id ORDER BY __regions__.id

count query: 0.031 sec

performing split: 0.003 sec

> names(x1[[1]])

[1] "-1" "1"

> x2 <- splitByAnnotation(eData, annoData, expand = TRUE)

writing region table: 0.02 sec

SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand, counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY __regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table: 0.043 sec

SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

count query: 0.021 sec

performing split: 0.002 sec

> names(x2[[1]])

[1] "-1"

> x3 <- splitByAnnotation(eData, annoData, expand = TRUE,

+ addOverStrand = TRUE)

writing region table: 0.021 sec

SELECT counts_tbl.chr, counts_tbl.location, counts_tbl.strand, counts_tbl.* , __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) ORDER BY __regions__.id, counts_tbl.chr, counts_tbl.location, counts_tbl.strand

fetching splits table: 0.044 sec

SELECT count(__regions__.id), __regions__.id FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

count query: 0.021 sec

performing split: 0.002 sec

17

5.3 Using annotation with experimental data 5 INTERFACE

> head(x3[[1]])

chr location counts

[1,] 13 460 4

[2,] 13 461 5

[3,] 13 462 2

[4,] 13 463 3

[5,] 13 464 4

[6,] 13 465 2

Leaving the splitByAnnotation function, sometimes we want to compute summaries of higher
level entities, such as genes, pseudogenes, and intergenic regions. We can label each genomic location
with its annotation using the mergeWithAnnotation convenience function.

> mergeWithAnnotation(eData, annoData)[1:3,]

writing regions table: 0.02 sec

SELECT * FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0)

fetching merge table: 0.023 sec

chr location strand counts id chr start end strand feature

1 13 460 -1 4 1 13 460 521 -1 gene

2 13 461 -1 5 1 13 460 521 -1 gene

3 13 462 -1 2 1 13 460 521 -1 gene

This will result in duplicated genomic locations in case a genomic location is annotated multiple
times.

There are a number of parameters that can make this more natural.

> par(mfrow = c(1, 2))

> x <- lapply(mergeWithAnnotation(eData, annoData, splitBy = "feature",

+ what = "counts"), function(x) {

+ plot(density(x))

+ })

writing regions table: 0.021 sec

SELECT counts,feature FROM counts_tbl INNER JOIN __regions__ ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0)

fetching merge table: 0.018 sec

splitting by: feature: 0.001 sec

18

6 ANALYSIS TOOLS

0 5 10 15

0.
0

0.
1

0.
2

0.
3

density.default(x = x)

N = 3598 Bandwidth = 0.2612

D
en

si
ty

0 2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

density.default(x = x)

N = 3372 Bandwidth = 0.2646
D

en
si

ty

6 Analysis tools

In the case of short read sequencing, the Genominator package offers a number of specific useful tools.
They are presented in no particular order.

6.1 Coverage

The computeCoverage function can be used to assess the sequencing depth.

> coverage <- computeCoverage(eData, annoData, effort = seq(100,

+ 1000, by = 5), cutoff = function(e, anno, group) {

+ e > 1

+ })

writing regions table: 0.021 sec

SELECT __regions__.id, TOTAL(counts) FROM __regions__ LEFT OUTER JOIN counts_tbl ON __regions__.chr = counts_tbl.chr AND counts_tbl.location BETWEEN __regions__.start AND __regions__.end AND (counts_tbl.strand = __regions__.strand OR __regions__.strand = 0 OR counts_tbl.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.031 sec

fetching summary: 0.01 sec

> plot(coverage, draw.legend = FALSE)

19

6.2 Statistical Functions: Goodness of Fit 6 ANALYSIS TOOLS

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x$effort

x$
co

ve
ra

ge

6.2 Statistical Functions: Goodness of Fit

You can conduct a goodness of fit analysis to the Poisson model across lanes using the following
function. The result is assessed by a QQ-plot against the theoretical distribution (of either the p-
values or the statistic).

> plot(regionGoodnessOfFit(eDataJoin, annoData))

writing regions table: 0.021 sec

SELECT __regions__.id, TOTAL(counts_1), TOTAL(counts_2) FROM __regions__ LEFT OUTER JOIN allcounts ON __regions__.chr = allcounts.chr AND allcounts.location BETWEEN __regions__.start AND __regions__.end AND (allcounts.strand = __regions__.strand OR __regions__.strand = 0 OR allcounts.strand = 0) GROUP BY __regions__.id ORDER BY __regions__.id

fetching summary table: 0.033 sec

20

6.2 Statistical Functions: Goodness of Fit 6 ANALYSIS TOOLS

●
●
●●●

●●
●●

●●●
●●●

●●●●●●
●●

●●●●
●●●

●
●●●●

●●●
●●●●

●
●●●

●●
●●

●●●
●●●

●
●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●

●●●●
●●●●●

●●
●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

group

theoretical quantiles

ob
se

rv
ed

 q
ua

nt
ile

s

We can also do this for subsets of the data, for example within condition.

> plot(regionGoodnessOfFit(as.data.frame(matrix(rpois(1000,

+ 100), ncol = 10)), groups = rep(c("A", "B"), 5),

+ denominator = rep(1, 10)))

21

6.2 Statistical Functions: Goodness of Fit 6 ANALYSIS TOOLS

●●
●●●●

●●
●●

●●●●
●●●

●●●●
●●●●●●

●●●●●
●●●

●●●
●
●●

●●●●
●●●●

●●
●●●●

●●●●
●●●●●

●
●●

●●
●●●

●●●●●●
●●

●●●●●
●●●●●

●●
●●

●
●
●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

theoretical quantiles

ob
se

rv
ed

 q
ua

nt
ile

s

●●●●
●●●

●●●●
●●●

●●●●●●
●
●●●●

●●●●
●●●●

●●●●●
●●

●●●●
●●●●

●●●
●●●●●

●●●
●●

●●●
●●

●●
●●

●●●
●●

●●●

●●
●●

●
●●

●●●
●●

●
●●●●●●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B

theoretical quantiles
ob

se
rv

ed
 q

ua
nt

ile
s

22

	Introduction
	Data model
	Experimental data
	Annotation data

	Overview
	Creating Experimental Data
	Creating Annotation

	Creating and managing data
	Aggregation
	Merging
	Collapsing

	Interface
	Summarizing experimental data
	Selecting a region
	Using annotation with experimental data

	Analysis tools
	Coverage
	Statistical Functions: Goodness of Fit

