\name{predict.pcaRes} \alias{predict.pcaRes} \alias{predict,pcaRes-method} \title{Predict values from PCA.} \description{This function extracts the predict values from a pcaRes object for the PCA methods SVD, Nipals, PPCA and BPCA Newdata is first centered if the PCA model was and then scores (\eqn{T}) and data (\eqn{X}) is 'predicted' according to : \eqn{\hat{T}=X_{new}P}{That=XnewP} \eqn{\hat{X}_{new}=\hat{T}P'}{Xhat=ThatP'} Missing values are set to zero before matrix multiplication to achieve NIPALS like treatment of missing values. } \usage{predict.pcaRes(object, newdata, pcs=nPcs(object), ...)} \arguments{ \item{object}{\code{pcaRes} the \code{pcaRes} object of interest.} \item{newdata}{\code{matrix} new data with same number of columns as the used to compute \code{object}.} \item{pcs}{\code{numeric} The number of PC's to consider} \item{...}{Not passed on anywhere, included for S3 consistency.} } \value{A list with the following components: \item{scores}{The predicted scores} \item{x}{The predicted data} } \keyword{multivariate} \examples{ data(iris) hidden <- sample(nrow(iris), 50) pcIr <- pca(iris[-hidden,1:4]) pcFull <- pca(iris[,1:4]) irisHat <- predict(pcIr, iris[hidden,1:4]) cor(irisHat$scores[,1], scores(pcFull)[hidden,1]) } \author{Henning Redestig }