\name{pcaRes} \docType{class} \alias{pcaRes} \alias{pcaRes-class} \alias{print,pcaRes-method} \alias{show,pcaRes-method} \alias{summary,pcaRes-method} \alias{slplot,pcaRes-method} \alias{leverage,pcaRes-method} \alias{completeObs,pcaRes-method} \alias{completeObs} \alias{scores.pcaRes} \alias{loadings.pcaRes} \alias{nPcs,pcaRes-method} \alias{nPcs} \alias{nVar,pcaRes-method} \alias{nVar} \alias{nObs,pcaRes-method} \alias{nObs} \alias{dim.pcaRes} \alias{centered,pcaRes-method} \alias{centered} \alias{method,pcaRes-method} \alias{method} \alias{sDev,pcaRes-method} \alias{sDev} \title{Class for representing a PCA result} \description{This is a class representation of a PCA result} \section{Creating Objects}{ \code{new("pcaRes", scores=[the scores], loadings=[the loadings], nPcs=[amount of PCs], R2cum=[cumulative R2], nObs=[amount of observations], nVar=[amount of variables], R2=[R2 for each individual PC], sDev=[stdev for each individual PC], centered=[was data centered], center=[original means], varLimit=[what variance limit was exceeded], method=[method used to calculate PCA], missing=[amount of NAs], completeObs=[estimated complete observations])} } \section{Slots}{ \describe{ \item{scores}{"matrix", the calculated scores} \item{loadings}{"matrix", the calculated loadings} \item{R2cum}{"numeric", the cumulative R2 values} \item{sDev}{"numeric", the individual standard deviations} \item{R2}{"numeric", the individual R2 values} \item{nObs}{"numeric", amount of observations} \item{nVar}{"numeric", amount of variables} \item{centered}{"logical", data was centered or not} \item{center}{"numeric", the original variable centers} \item{varLimit}{"numeric", the exceeded variance limit} \item{nPcs}{"numeric", the amount of calculated PCs} \item{method}{"character", the method used to perform PCA} \item{missing}{"numeric", the total amount of missing values in original data} \item{completeObs}{"matrix", the estimated complete observations} \item{network}{"nlpcaNet", the network used by non-linear PCA} } } \section{Methods}{ \describe{ \item{print}{Print function} \item{summary}{Extract information about PC relevance} \item{screeplot}{Plot a barplot of standard deviations for PCs} \item{slplot}{Make a side by side score and loadings plot} \item{nPcs}{Get the number of PCs} \item{nObs}{Get the number of observations} \item{nVar}{Get the number of variables} \item{loadings}{Get the loadings} \item{scores}{Get the scores} \item{dim}{Get the dimensions (number of observations, number of features)} \item{centered}{Get a logical indicating if centering was done as part of the model} \item{completeObs}{Get the imputed data set} \item{method}{Get a string naming the used PCA method} \item{sDev}{Get the standard deviations of the PCs} } } \keyword{classes}