nem

April 19, 2010

BFSlevel

Build (generalized) hierarchy by Breath-First Search

Description

BFSlevel builds a (generalized) hierarchy by Breath-First Search as described in (Yu and Gerstein, 2006)

Usage

BFSlevel(g,verbose=TRUE)

Arguments

g graphNEL object
verbose Default: TRUE

Details

Haiyuan Yu and Mark Gerstein: Genomic analysis of the hierarchical structure of regulatory networks, PNAS 103(40):14724-14731, 2006

Value

level vector of levels for each node

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

Examples

bla

2 BoutrosRNAi2002

BoutrosRNAi2002

RNAi data on Drosophila innate immune response

Description

Data from a study on innate immune response in *Drosophila* (Boutros et al, 2002). Selectively removing signaling components by RNAi blocked induction of all, or only parts, of the transcriptional response to LPS. The nested structure of perturbation effects allows to reconstruct a branching in the Imd pathway.

Usage

```
data(BoutrosRNAi2002)
```

Format

BoutrosRNAiExpression: data matrix: 14010 x 16 BoutrosRNAiDiscrete: binary matrix: 68 x 16

Details

The dataset consists of 16 Affymetrix-microarrays: 4 replicates of control experiments without LPS and without RNAi (negative controls), 4 replicates of expression profiling after stimulation with LPS but without RNAi (positive controls), and 2 replicates each of expression profiling after applying LPS and silencing one of the four candidate genes tak, key, rel, and mkk4/hep.

BoutrosRNAiExpression: For preprocessing we performed normalization on probe level using a variance stabilizing transformation (Huber et al, 2002), and probe set summarization using a median polish fit of an additive model (Irizarry et al, 2003).

BoutrosRNAiDiscrete: contains only the 68 genes more than two-fold up-regulated between negative and positive controls. The continuous expression values are discretized to 1 (effect: closer to negative controls) and 0 (no effect: closer to positive controls).

BoutrosRNAiDens: log \$p\$-value density matrix for the 68 genes with more than two-fold up-regulated between negative and positive controls.

BoutrosRNAiLods: B-value matrix for the 68 genes with more than two-fold up-regulated between negative and positive controls.

BoutrosRNAiLogFC: matrix with log fold changes

References

Boutros M, Agaisse H, Perrimon N, Sequential activation of signaling pathways during innate immune responses in Drosophila. Developmental Cell. 3(5):711-722, 2002

See Also

```
nem.discretize
```

Examples

```
data("BoutrosRNAi2002")
dim(BoutrosRNAiExpression)
dim(BoutrosRNAiDiscrete)
```

closest.transitive.greedy

```
closest.transitive.greedy
```

Find transitively closed graph most similar to the given one

Description

First, from the original graph Φ spurious edges are pruned via prune. graph. Then the new graph Φ' is transitively closed. Afterwards, the algorithms successively introduces new edges minimizing the distance to the original graph (defined as $\sum_{ij} |\Phi_{ij} - \Phi'_{ij}|$) most. After each edge addition the graph is transitively closed again.

Usage

```
closest.transitive.greedy(Phi, verbose=TRUE)
```

Arguments

Phi adjacency matrix

verbose do you want to see progress statements printed or not? Default: TRUE

Value

adjacency matrix

Author(s)

Holger Froehlich

See Also

```
prune.graph, transitive.closure, transitive.reduction
```

enumerate.models

Exhaustive enumeration of models

Description

The function enumerate.models is used to create the model space for inference by exhaustive enumeration. It computes a list of all transitively closed directed graphs on a given number of nodes.

Usage

```
enumerate.models(x,name=NULL,trans.close=TRUE,verbose=TRUE)
```

Arguments

x either the number of nodes or a vector of node names.

name optionally the nodenames, if they are not provided in x

trans.close should graphs be transitively closed?

verbose if TRUE outputs number of (unique) models. Default: TRUE

4 generateNetwork

Details

The model space of Nested Effects Models consists of all transitively closed directed graphs. The function enumerate.models creates them in three steps: (1.) build all directed graphs on x (or length (x)) nodes, (2.) transitively close each one of them, and (3.) remove redundant models to yield a unique set. So far, enumeration is limited to up to 5 nodes.

I'm aware that this is inefficient! It would be very desirable to enumerate the models directly (i.e. without creating all directed graphs as an intermediate step).

Value

a list of models. Each entry is a transitively closed adjacency matrix with unit main diagonal.

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

nem

Examples

```
enumerate.models(2)
enumerate.models(c("Anna", "Bert"))
```

generateNetwork

Random networks and data sampling

Description

1. Random network generation; 2. sampling of data from a given network topology

Usage

```
sampleRndNetwork(Sgenes, scaleFree=TRUE, gamma=2.5, maxOutDegree=length(Sgenes),
sampleData(Phi, m, prob=NULL, uninformative=0, type="binary", replicates=4, type
```

Arguments

Sgenes character vector of S-genes

scaleFree should the network topology be scale free?

gamma for scale free networks: out-degrees of nodes are sampled from $\frac{1}{Z}*(0:maxOutDegree)^{-\gamma}$,

where Z is a normalization factor

 $\verb|maxOutDegree| maximal out-degree| of nodes$

maxInDegree maximal in-degree of nodes prior to transitive closure

trans.close Should the transitive closure of the graph be returned? Default: TRUE

DAG Should only DAGs be sampled? Default: FALSE

Phi adjacency matrix

generateNetwork 5

m	number of E-genes to sample
prob	probability for each S-gene to get an E-gene attached
uninformativ	re
	additional number of uninformative E-genes, i.e. E-genes carrying no information about the nested structure
type	"binary" = binary data; "density" = log 'p-value' densities sampled from beta- uniform mixture model; "lodds" = log odds sampled from two normal distribu- tions
replicates	number of replicate measurements to simulate for binary data
typeI.err	simulated type I error for binary data
typeII.err	simulated type II error for binary data
alpha	parameter for $Beta(\alpha,1)$ distribution: one parameter per S-gene
beta	parameter for $Beta(1,\beta)$ distribution: one parameter per S-gene
lambda	mixing coefficients for beta-uniform mixture model of the form: $\lambda_1 + \lambda_2 * Beta(\alpha,1) + \lambda_3 * Beta(1,\beta)$. There is a vector of 3 mixing coefficients per model and one model per S-gene.
meansH1	normal distribution means of log odds ratios under the hypothesis of expecting an effect: one mean per S-gene
meansH0	normal distribution means of log odds ratios under the null hypothesis: one mean per S-gene
sdsH1	normal distribution standard deviations of log odds values under the hypothesis of expecting an effect: one sd per S-gene
sdsH0	normal distribution standard deviations of log odds values under the null hypothesis: one sd per S-gene

Details

Random networks are generated as follows: For each S-gene S_k we randomly choose the number o of outgoing edges between 0 and maxOutDegree. This is either done uniform randomly or, if scale free networks are created, according to a power law distribution specified by gamma. We then select o S-genes having at most maxInDegree ingoing edge and connected S_k to them.

The function sampleData samples data from a given network topology as follows: We first attach E-genes to S-genes according to the probabilities prob (default: uniform). We then simulate knockdowns of the individual S-genes. For those E-genes, where no effects are expected, values are sampled from a null distribution, otherwise from an alternative distribution. In the simplest case we only sample binary data, where 1 indicates an effect an 0 no effect. Alternatively, we can sample log "p-value" densities according to a beta-uniform mixture model, where the null distribution is uniform and the alternative a mixture of two beta distributions. A third possibility is to sample log odds ratios, where alternative and null distribution are both normal.

Value

For sampleRndNetwork an adjacency matrix, for sampleData a data matrix, for sampleData.BN a data matrix and a linking of effects to signals.

Author(s)

Holger Froehlich http://www.dkfz.de/mga2/people/froehlich, Cordula Zeller

6 getDensityMatrix

See Also

```
getDensityMatrix
```

Examples

```
Phi = sampleRndNetwork(paste("S",1:5,sep=""))
D = sampleData(Phi, 100, type="density") $D
plot(as(transitive.reduction(Phi), "graphNEL"), main="original graph")
x11()
plot.nem(nem(D, control=set.default.parameters(unique(colnames(D)), type="CONTmLLBayes"))
```

getDensityMatrix Calculate density matrix from raw p-value matrix

Description

Fit a 3 component BUM model to each column of a raw p-value matrix.

Usage

```
getDensityMatrix(Porig, dirname=NULL, startab=c(0.3,10), startlam=c(0.6,0.1,0.3)
```

Arguments

Porig	matrix of raw p-values
dirname	name of a directory to save histograms and QQ-plots to. If dirname=NULL, then the plots are made to the screen, and after each fit the user is asked to press a key in order to continue.
startab	start values for alpha and beta parameter
startlam	start values for mixing coefficients
tol	convergence tolerance: If the absolute likelihood ratio -1 becomes smaller than this value, then the EM algorithm is supposed to be converged.

Details

The BUM density model consists of 3 components: $f(x) = lambda_1 + lambda_2*dbeta(x,alpha,1) + lambda_3*dbeta(x,1,beta)$. The mixing coefficients and the parameters alpha and beta are fitted together via an EM algorithm.

Value

log-density matrix of same dimensions as Porig: The log-densities can be interpreted as log signal-to-noise ratios. A value > 0 means higher signal than noise, and a value < 0 a higher noise than signal.

Note

Note the difference to the previous package version: the LOG-density is returned now!

Author(s)

Holger Froehlich

infer.edge.type 7

infer.edge.type Infe

Infer regulation direction for each edge

Description

The method infers edge types (up-regulation, down-regulation) for a given nem model. For an edge a->b the method looks at the fraction of E-genes attached to b (including b itself), which are up-or down-regulated in a knock-down of a. If significantly more genes are down-regulated than up-regulated, the edge a->b is assumed to be an activation. Likewise, if significantly more genes are up-regulated than down-regulated, a->b is assumed to be an inhibition. If there is no significant difference in up- and down-regulated edges, a->b does not have a specified type.

Usage

```
infer.edge.type(x, logFC, alpha=0.05, adj.method="BY")
```

Arguments

x nem object

logFC matrix with fold changes. The rownames of this matrix should correspond to the

rownames of the data matrix, which was used to infer the nem model.

alpha p-value cutoff

adj.method multiple testing correction method. Default: Benjamini-Yekutieli

Details

Significance is calculated using a two-tailed binomial test with null hypothesis p=0.5.

Value

Modified nem object. Each edge in the nem graph now has a "weight" and a "label" attribute. The label attribute corresponds to the original value in the adjacency matrix. The weight attribute encodes up- and down-regulation in the following way: value 2 means up-regulation, value -1 down-regulation and value 1 corresponds to an unknown regulation type.

Author(s)

Holger Froehlich

See Also

binom.test

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
result = nem(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05)))
    resEdgeInf = infer.edge.type(result, BoutrosRNAiLogFC)
    plot.nem(resEdgeInf)</pre>
```

8 local.model.prior

internal

internal functions

Description

internal functions: do not call these functions directly.

Usage

various

Arguments

various

Value

various

Author(s)

Holger Froehlich

local.model.prior Computes a prior to be used for edge-wise model inference

Description

The function pairwise.posterior infers a phenotypic hierarchy edge by edge by choosing between four models (unconnected, subset, superset, undistinguishable). For each edge, local.model.prior computes a prior distribution over the four models. It can be used to ensure sparsity of the graph and high confidence in results.

Usage

```
local.model.prior(size, n, bias)
```

Arguments

size	expected number of	edges in the graph.

n number of perturbed genes in the dataset, number of nodes in the graph

bias the factor by which the double-headed edge is preferred over the single-headed

edges

nem.bootstrap 9

Details

A graph on n nodes has N=n*(n-1)/2 possible directed edges (one- or bi-directional). If each edge occurs with probability p, we expect to see Np edges in the graph. The function local.model.prior takes the number of genes (n) and the expected number of edges (size) as an input and computes a prior distribution for edge occurrence: no edge with probability size/N, and the probability for edge existence being split over the three edge models with a bias towards the conservative double-headed model specified by bias. To ensure sparsity, the size should be chosen small compared to the number of possible edges.

Value

a distribution over four states: a vector of four positive real numbers summing to one

Author(s)

Florian Markowetz < URL: http://genomics.princeton.edu/~florian>

See Also

```
pairwise.posterior, nem
```

Examples

```
# uniform over the 3 edge models
local.model.prior(4,4,1)
# bias towards <->
local.model.prior(4,4,2)
```

nem.bootstrap

Bootstrapping for nested effect models

Description

Performs bootstrapping (resampling with replacement) on effect reporters to assess the statistical stability of networks

Usage

```
nem.bootstrap(D, thresh=0.5, nboot=1000,inference="nem.greedy",models=NULL,contr
## S3 method for class 'nem.bootstrap':
print(x, ...)
```

Arguments

D data matrix with experiments in the columns (binary or continous)

thresh only edges appearing with a higher frequency than "thresh" are returned nboot number of bootstrap samples desired

inference search to use exhaustive enumera

search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities

10 nem.calcSignificance

models	a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
control	list of parameters: see set.default.parameters
verbose	do you want to see progression statements? Default: TRUE
X	nem object
	other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL. For DEPNs a stratified bootstrap is carried out, where strate are defined on each replicate group for each time point.

Value

nem object with edge weights being the bootstrap probabilities

Author(s)

Holger Froehlich

nem.calcSignificance

See Also

```
nem.jackknife, nem.consensus, nem.calcSignificance, nem
```

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    nem.bootstrap(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05))
## End(Not run)</pre>
```

Statistical significance of network hypotheses

Description

Assess statistical significance of a network hypothesis by comparing it to a null hypothesis.

Usage

```
nem.calcSignificance(D, x, N=1000, seed=1)
```

Arguments

D	data matrix with experiments in the columns (binary or continious)
X	nem object
N	number of random networks to sample
seed	random seed

nem.consensus 11

Details

Given data, N random network hypotheses from a null distribution are drawn as follows: For each S-gene S_k we randomly choose a number o of outgoing edges between 0 and 3. We then select o S-genes having at most 1 ingoing edge, connected S_k to them and transitively closed the graph. For all random network hypotheses it is counted, how often their likelihood is bigger than that of the given network. This yields an exact p-value.

Another way of assessing the statistical significance of the network hypothesis is to draw random permutations of the node labels. Note that in this case the node degree distribution is the same as in the given network. Again, we can obtain an exact p-value by counting, how often the likelihood of the permuted network is bigger than that of the given network.

Finally, comparison to randomly perturbed networks (insertion or deletion of 1 edge) yields an exact p-value describing the stability of the network.

Value

```
p.value.rnd p-value of the network according to the null hypothesis that it is random
p.value.perm p-value of the network according to the null hypothesis that a network with
permuted node labels is at least as good
p.value.mod p-value of the network according to the null hypothesis a randomly peturbed
network is at least as good
```

Author(s)

Holger Froehlich

See Also

```
nem.consensus, nem.jackknife, nem.bootstrap, nem
```

Examples

nem.consensus

Statistically stabile nested effects models

Description

Performs bootstrapping (resampling with replacement) on E-genes and jackknife on S-genes to assess the statistical stability of networks. Only edges appearing with a higher frequency than a predescribed threshold in both procedures are regarded as statistical stable and appear in the so-called consensus network.

12 nem.consensus

Usage

```
nem.consensus(D,thresh=0.5, nboot=1000,inference="nem.greedy",models=NULL,contro
## S3 method for class 'nem.consensus':
print(x, ...)
```

Arguments

D data matrix with experiments in the columns (binary or continous)

thresh only edges appearing with a higher frequency than "thresh" in both, bootstrap

and jackknife procedure, are regarded as statistically stable and trust worthy

nboot number of bootstrap samples desired

inference search to use exhaustive enumeration, triples for triple-based inference,

pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alter-

nating MAP optimization using log odds or log p-value densities

models a list of adjacency matrices for model search. If NULL, an exhaustive enumer-

ation of all possible models is performed.

control list of parameters: see set.default.parameters
verbose do you want to see progression statements? Default: TRUE

x nem object

... other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not lambda is a vector and Pm != NULL.

Value

consensus network (nem object)

Author(s)

Holger Froehlich

See Also

```
nem.bootstrap, nem.jackknife, nem.calcSignificance, nem
```

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    nem.consensus(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05))
## End(Not run)</pre>
```

nem.cont.preprocess 13

```
nem.cont.preprocess
```

Calculate classification probabilities of perturbation data according to control experiments

Description

Calculates probabilities of data to define effects of interventions with respect to wildtype/control measurements

Usage

```
\verb|nem.cont.preprocess| (D, \verb|neg.control=NULL|, \verb|pos.control=NULL|, \verb|nfold=2|, influence factor| (D, \verb|neg.control=NULL|, \verb|nfold=3|, influence factor| (D, \verb|neg.control=NULL|, onfold=3|, influence factor| (D, \verb|neg.control=NULL|, onfold=3|, influence factor| (D, \verb|neg.control=NULL
```

Arguments

D	matrix with experiments as columns and effect reporters as rows	
neg.control	either indices of columns in \ensuremath{D} or a matrix with the same number of rows as \ensuremath{D}	
pos.control	either indices of columns in ${\mathbb D}$ or a matrix with the same number of rows as ${\mathbb D}$	
nfold	fold-change between neg. and pos. controls for selecting effect reporters. Default: $\boldsymbol{2}$	
influencefactor		
	factor multiplied onto the probabilities, so that all negative control genes are treated as influenced, usually automatically determined	
empPval	empirical p-value cutoff for effects if only one control is available	
verbose	Default: TRUE	

Details

Determines the empirical distributions of the controls and calculates the probabilities of pertubartion data to belong to the control distribution(s).

Value

dat	data matrix	
pos	positive controls [in the two-controls setting]	
neg	negative controls [in the two-controls setting]	
sel	effect reporters selected [in the two-controls setting]	
prob.influenced		
	probability of a reporter to be influenced	
influencefac	tor	
	factor multiplied onto the probabilities, so that all negative control genes are treated as influenced	

Note

preliminary! will be developed to be more generally applicable

14 nem.discretize

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005

See Also

BoutrosRNAi2002

Examples

```
data("BoutrosRNAi2002")
preprocessed <- nem.cont.preprocess(BoutrosRNAiExpression, neg.control=1:4, pos.control=</pre>
```

nem.discretize

Discretize perturbation data according to control experiments

Description

discretizes raw data to define effects of interventions with respect to wildtype/control measurements

Usage

```
nem.discretize(D,neg.control=NULL,pos.control=NULL,nfold=2,cutoff=0:10/10, pCour
```

Arguments

D	matrix with experiments as columns and effect reporters as rows
neg.control	either indices of columns in \ensuremath{D} or a matrix with the same number of rows as \ensuremath{D}
pos.control	either indices of columns in $\ensuremath{\mathbb{D}}$ or a matrix with the same number of rows as $\ensuremath{\mathbb{D}}$
nfold	fold-change between neg. and pos. controls for selecting effect reporters. Default: $\boldsymbol{2}$
cutoff	a (vector of) cutoff value(s) weighting the pos. controls versus the neg. controls. Default: $0.10/10$
pCounts	pseudo-counts to guard against unreasonable low error estimates
empPval	empirical p-value cutoff for effects if only one control is available
verbose	Default: TRUE

Details

Chooses cutoff such that separation between negative and positive controls becomes optimal.

nem.jackknife 15

Value

dat	discretized data matrix
pos	discretized positive controls [in the two-controls setting]
neg	discretized negative controls [in the two-controls setting]
sel	effect reporters selected [in the two-controls setting]
cutoff	error rates for different cutoff values [in the two-controls setting]
para	estimated error rates [in the two-controls setting]

Note

preliminary! will be developed to be more generally applicable

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

References

Markowetz F, Bloch J, Spang R, Non-transcriptional pathway features reconstructed from secondary effects of RNA interference, Bioinformatics, 2005

See Also

BoutrosRNAi2002

Examples

```
# discretize Boutros data as in
# Markowetz et al, 2005
data("BoutrosRNAi2002")
disc <- nem.discretize(BoutrosRNAiExpression, neg.control=1:4, pos.control=5:8, cutoff=.7
stopifnot(disc$dat==BoutrosRNAiDiscrete[,9:16])</pre>
```

nem.jackknife

Jackknife for nested effect models

Description

Assesses the statistical stability of a network via a jackknife procedure: Each S-gene is left out once and the network reconstructed on the remaining ones. The relative frequency of each edge to appear in n-1 jackknife samples is returned.

Usage

```
nem.jackknife(D, thresh=0.5, inference="nem.greedy", models=NULL, control=set.defa
## S3 method for class 'nem.jackknife':
print(x, ...)
```

16 nemModelSelection

Arguments

D	data matrix with experiments in the columns (binary or continious)
thresh	only edges appearing with a higher frequency than "thresh" are returned
inference	search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
models	a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
control	list of parameters: see set.default.parameters
verbose	do you want to see progression statements? Default: TRUE
Х	nem object
	other arguments to pass

Details

Calls nem or nemModelSelection internally, depending on whether or not parameter lambda is a vector and parameter Pm != NULL.

Value

nem object with edge weights being the jackknife probabilities

Author(s)

Holger Froehlich

See Also

```
nem.bootstrap, nem.consensus, nem, nemModelSelection
```

Examples

```
## Not run:
    data("BoutrosRNAi2002")
    D <- BoutrosRNAiDiscrete[,9:16]
    nem.jackknife(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05))
## End(Not run)</pre>
```

nemModelSelection Model selection for nested effect models

Description

Infers models with different regularization constants, compares them via the BIC or AIC criterion and returns the highest scoring one

nemModelSelection 17

Usage

nemModelSelection(lambdas,D,inference="nem.greedy",models=NULL,control=set.defau

Arguments

lambdas	vector of regularization constants
D	data matrix with experiments in the columns (binary or continious)
inference	search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
models	a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
control	list of parameters: see set.default.parameters
verbose	do you want to see progression statements? Default: TRUE
	other arguments to pass to function nem or network.AIC

Details

nemModelSelection internally calls nem to infer a model with a given regularization constant. The comparison between models is based on the BIC or AIC criterion, depending on the parameters passed to network.AIC.

Value

nem object

Author(s)

Holger Froehlich

See Also

```
set.default.parameters, nem, network.AIC
```

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
hyper = set.default.parameters(unique(colnames(D)), para=c(0.13, 0.05), Pm=diag(4))
res <- nemModelSelection(c(0.1,1,10), D, control=hyper)
plot.nem(res,main="highest scoring model")</pre>
```

18 nem

nem Nested Effects Models - main function	
---	--

Description

The main function to perform model learning from data

Usage

```
nem(D,inference="nem.greedy",models=NULL,control=set.default.parameters(setdiff(
## S3 method for class 'nem':
print(x, ...)
```

Arguments

D inference	data matrix with experiments in the columns (binary or continious) search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based
	inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
models	a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
control	list of parameters: see set.default.parameters
verbose	do you want to see progression statements? Default: TRUE
Х	nem object
	other arguments to pass

Details

If parameter Pm != NULL and parameter lambda == 0, a Bayesian approach to include prior knowledge is used. Alternatively, the regularization parameter lambda can be tuned in a model selection step via the function nemModelSelection using the BIC criterion. If automated subset selection of effect reporters is used and parameter type == CONTmLLMAP, the regularization parameter delta is tuned via the AIC model selection criterion. Otherwise, an iterative algorithm is executed, which in an alternating optimization scheme reconstructs a network given the current set of effect reporters and then selects the effect reporters having the highest likelihood under the given network. The procedure is run until convergence.

The function plot . nem plots the inferred phenotypic hierarchy as a directed graph, the likelihood distribution of the models (only for exhaustive search) or the posterior position of the effected genes.

Value

graph	the inferred directed graph (graphNEL object)
mLL	log posterior marginal likelihood of final model
pos	posterior over effect positions
mappos	MAP estimate of effect positions
selected	selected E-gene subset
LLperGene	likelihood per selected E-gene
control	hyperparameter as in function call

network.AIC

Author(s)

Holger Froehlich <URL: http://www.dkfz.de/mga2/people/froehlich>, Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

```
set.default.parameters, nemModelSelection, nem.jackknife, nem.bootstrap,
nem.consensus, local.model.prior, plot.nem
```

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
control = set.default.parameters(unique(colnames(D)), para=c(0.13, 0.05))
res1 <- nem(D,inference="search", control=control)</pre>
res2 <- nem(D,inference="pairwise", control=control)</pre>
res3 <- nem(D,inference="triples", control=control)</pre>
res4 <- nem(D, inference="ModuleNetwork", control=control)</pre>
res5 <- nem(D,inference="nem.greedy", control=control)</pre>
res6 = nem(BoutrosRNAiLods, inference="nem.greedyMAP", control=control)
par(mfrow=c(2,3))
plot.nem(res1, main="exhaustive search")
plot.nem(res2, main="pairs")
plot.nem(res3, main="triples")
plot.nem(res4, main="module network")
plot.nem(res5, main="greedy hillclimber")
plot.nem(res6, main="alternating MAP optimization")
```

network.AIC

AIC/BIC criterion for network graph

Description

Calclate AIC/BIC for a given network graph (should be transitively closed). The number of free parameters equals the number of unknown edges in the network graph.

Usage

```
network.AIC(network,Pm=NULL,k=length(nodes(network$graph)),verbose=TRUE)
```

Arguments

```
network a nem object (e.g. 'pairwise')

Pm prior over models (n x n matrix). If NULL, then a matrix of 0s is assumed k penalty per parameter in the AIC/BIC calculation. k = 2 for classical AIC verbose print out the result
```

Details

For k = log(n) the BIC (Schwarz criterion) is computed. Usually this function is not called directly but from nemModelSelection

20 plotEffects

Value

AIC/BIC value

Author(s)

Holger Froehlich

See Also

nemModelSelection

Examples

```
data("BoutrosRNAi2002")
D = BoutrosRNAiDiscrete[,9:16]
control = set.default.parameters(unique(colnames(D)), para=c(0.13,0.05))
res1 <- nem(D, control=control)
network.AIC(res1)
control$lambda=100 # enforce sparsity
res2 <- nem(D,control=control)
network.AIC(res2)</pre>
```

plotEffects

Plots data according to a phenotypic hierarchy

Description

plotEffects visualizes the subset structure in the data by reordering rows and columns according to the topological order given by a phenotypic hierarchy.

Usage

plotEffects(D, nem, border=TRUE, legend=TRUE, order=NULL, orderSCC=TRUE, palette="Blue

Arguments

D	data matrix
nem	phenotypic hierarchy (object of class 'score' or 'pairwise')
border	draw red lines to indicate gene-specific effect reporters. Default: TRUE
legend	plot a legend. Default: TRUE
order	pre-define an order of the S-genes instead of the topological order to visualize the subset structure. Default: Use topological order.
orderSCC	Is the pre-defined order given on strongly connected components rather than on individual nodes?
palette	color palette to use: either 'BlueRed' (default) or 'Grey'
	additional parameters for the graphics function 'image'

plot.nem 21

Details

The experiments in the columns are reordered according to the topological order given by a phenotypic hierarchy. The effect reporters in the rows are grouped together by their position in the hierarchy. The groups are then arranged by topological order. Within each group the rows are hierarchically clustered.

Value

ordering of the E-genes according to the hierarchy (vector of indices)

Note

This function was formerly named plot.effects. This naming is not possible any more, since S3 classes were used for the function plot.nem.

Author(s)

Florian Markowetz < URL: http://genomics.princeton.edu/~florian>, Holger Froehlich < URL: http://www.dkfz.de/mga2/p

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
res <- nem(D,control=set.default.parameters(unique(colnames(D)), para=c(.13,.05)))
plotEffects(D,res)</pre>
```

plot.nem

plot nested effect model

Description

plot graph of nested effects model, the marginal likelihood distribution or the posterior position of the effected genes

Usage

```
## S3 method for class 'nem':
plot(x, what="graph", remove.singletons=FALSE, PDF=FALSE, filename="nemplot.pdf"
```

Arguments

|weight| <= thresh

22 prune.graph

transitiveReduction

plot a transitively reduced graph

plot.probs plot edge weights/probabilities. If regulation directions have been inferred (see

infer.edge.type), upregulated edges are drawn red and downregulated edges blue. Edges, were no clear direction could be inferred, are drawn in black.

SCC plot the strongly connected components graph

D Visualize the nested subset structure of the dataset via plotEffects along

with the graph and show the linking of E-genes to S-genes in the dataset. Should

only be used for small networks. Default: Just plot the graph

draw.lines If the nested subset structure is shown, should additionally lines connecting S-

genes and their associated E-genes be drawn? WARNING: For larger datasets than e.g. 5 S-genes this most probably does not work, because the nested subset structure picture then partially overlaps with the graph picture. Default: Do not

draw these lines

palette color palette to use: either 'BlueRed' (default) or 'Grey'

... other arguments to be passed to the Rgraphviz plot function or to the graphics

'image' function.

Value

none

Author(s)

Florian Markowetz < URL: http://genomics.princeton.edu/~florian>, Holger Froehlich < URL: http://www.dkfz.de/mga2/june/

See Also

```
nem, plotEffects, infer.edge.type
```

prune.graph Prunes spurious edges in a phenotypic hierarchy	
---	--

Description

A heuristic to prune spurious edges in a pehnotypic hierarchy

Usage

```
prune.graph(g,cutIN=NULL,cutOUT=NULL,quant=.95,verbose=TRUE)
```

Arguments

g	an adjacency matrix or a 'graphNEL' object
cutIN	minimum number of missing in-edges required to cut all in-edges. Default
cutOUT	minimum number of missing out-edges required to cut all out-edges
quant	if 'cutIN' or 'cutOUT' are not assigned, a quantile 'quant' of the distribution of missing in- or out-edges for all nodes is used
verbose	Default: TRUE

SahinRNAi2008 23

Details

prune.graph provides a heuristic approach to prune surious edges. prune.graph compares the input graph to its transitive closure, and counts for each node how many incoming and outgoing edges are missing. If the number is bigger than a user-defined cutoff, all incoming (outgoing) edges are removed.

Value

```
graph the pruned phenotypic hierarchy (a 'graphNEL' object)
removed number of removed edges
missing.in number of missing in-edges for each node
missing.out number of missing out-edges for each node
```

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

Examples

```
# a transitively closed core with two spurious edges
g <- matrix(0,5,5)
g[1,2] <- 1
g[2,c(3,4)] <- 1
g[3,4] <- 1
g[4,5] <- 1
dimnames(g) <- list(LETTERS[1:5], LETTERS[1:5])
g <- as(g, "graphNEL")

# prune graph
gP <- prune.graph(g)

# plot
par(mfrow=c(1,2))
plot(g,main="two spurious edges")
plot(gP$graph,main="pruned")</pre>
```

SahinRNAi2008

Combinatorial Protein Knockdowns in the ERBB Signaling Pathway

Description

Sixteen RNAi knockdowns (including 3 double knockdowns) of proteins in the ERBB signaling pathway of trastuzumab resistant breast cancer cells were conducted. Reverse Phase Protein Array (RPPA) measurments for 10 signaling intermediates are available before and after EGF stimulation with 4 technical and 3 biological replicates.

Usage

```
data(SahinRNAi2008)
```

24 SCCgraph

Format

dat.unnormalized: 408×17 matrix (rows = RPPA measurements for (16 KOs + MOCK) x 4 technical x 3 biological replicates, columns = 10 antibodies + 6 proteins without measurements + time) dat.normalized: 408×17 matrix (measurements from technical and biological replicates are quantile normalized for each RNAi experiment) map.int2node: list with names being interventions (=names of dat.normalized) and entries being node names (=column names of dat.normalized)

Details

The cells were lysed on ice by scraping the cells in M-PER lysis buffer (Pierce, Rockford, IL) containing protease inhibitor Complete Mini (Roche, Basel), anti-phosphatase PhosSTOP (Roche, Basel), 10 mM NaF and 1mM Na4VO3. Protein concentrations were determined with a BCA Protein Assay Reagent Kit (Pierce, Rockford, IL). Lysates were mixed 1:2 with 2 times Protein Arraying Buffer (Whatman, Brentfort, UK) to obtain a final protein concentration of 1.5 mug/muL. Briefly, these lysates were printed onto nitrocellulose coated ONCYTE-slides (Grace Bio Labs, Bend, USA) using a non-contact piezo spotter, sciFlexxarrayer S5 (Scienion, Berlin, Germany). After primary and near-infrared (NIR)-dye labeled secondary antibodies applied, spots were analysed using an Odyssey scanner (LI-COR, Lincoln, USA) and signal intensities were quantified using Odyssey 2.0 software (For detailed information and an antibody list, see Sahin et al., 2008). Since no antibody against MEK1 was available, we measured protein expression of pERK1/2, which is downstream of MEK1.

References

Oezguer Sahin, Holger Froehlich, Christian Loebke, Ulrike Korf, Sara Burmester, Meher Majety, Jens Mattern, Ingo Schupp, Claudine Chaouiya, Denis Thieffry, Annemarie Poustka, Stefan Wiemann, Tim Beissbarth, Dorit Arlt, Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance, BMC Systems Biology, 2008

See Also

BoutrosRNAi2002

Examples

data("SahinRNAi2008")
dim(dat.normalized)
dim(dat.unnormalized)

SCCgraph

Combines Strongly Connected Components into single nodes

Description

SCCgraph is used to identify all nodes which are not distinguishable given the data.

Usage

```
SCCgraph(x,name=TRUE,nlength=20)
```

getRelevantEGenes 25

Arguments

x graphNEL object or an adjacency matrix

name Concatenate all names of summarized nodes, if TRUE, or number nodes, if

FALSE. Default: TRUE

nlength maximum length of names

Details

A graph inferred by either nem or nemModelSelection may have cycles if some phenotypic profiles are not distinguishable. The function SCCgraph identifies cycles in the graph (the strongly conneced components) and summarizes them in a single node. The resulting graph is then acyclic.

Value

graph a graphNEL object with connected components of the input graph summarized

into single nodes

a list mapping SCCs to nodes
which.scc a vector mapping nodes to SCCs

Author(s)

Florian Markowetz < URL: http://genomics.princeton.edu/~florian>, Holger Froehlich < URL: http://www.dkfz.de/mga2/

See Also

```
nem, transitive.reduction
```

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
res <- nem(D,control=set.default.parameters(unique(colnames(D)), para=c(.13,.05)))
#
sccg <- SCCgraph(res$graph,name=TRUE)
#
par(mfrow=c(1,2))
plot.nem(res, main="inferred from data")
plot(sccg$graph, main="condensed (rel,key)")</pre>
```

getRelevantEGenes Automatic selection of most relevant effect reporters

Description

1. A-priori filtering of effect reporters/E-genes: Select effect reporters, which show a pattern of differential expression across experiments that is expected to be non-random. 2. Automated effect reporters subset selection: Select those effect reporters, which have the highest likelihood under the given network hypothesis.

26 getRelevantEGenes

Usage

```
filterEGenes(Porig, D, Padj=NULL, ntop=100, fpr=0.05, adjmethod="bonferroni", cugetRelevantEGenes(Phi, D, control, nEgenes=min(10*nrow(Phi), nrow(D)))
```

Arguments

For method filterEGenes:

matrix of raw p-values, typically from the complete array

Porrig data matrix. Columns correspond to the nodes in the silencing scheme. Rows

are effect reporters.

Padj matrix of false positive rates. If not, provided Benjamini-Hochbergs method for

false positive rate computation is used.

ntop number of top genes to consider from each knock-down experiment

fpr significance cutoff for the FDR

adjmethod adjustment method for pattern p-values

cutoff significance cutoff for patterns

For method getRelevantEGenes:

Phi adjacency matrix with unit main diagonal

control list of parameters: see set.default.parameters

nEgenes no. of E-genes to select

Details

The method filterEGenes performs an a-priori filtering of the complete microarray. It determines how often E-genes are expected to be differentially expressed across experiments just randomly. According to this only E-genes are chosen, which show a pattern of differential expression more often than can be expected by chance.

The method getRelevantEGenes looks for the E-genes, which have the highest likelihood under the given network hypothesis. In case of the scoring type "CONTmLLBayes" these are all E-genes which have a positive contribution to the total log-likelihood. In case of type "CONTmLLMAP" all E-genes not assigned to the "null" S-gene are returned. This involves the prior probability delta/no. S-genes for leaving out an E-gene. For all other cases ("CONTmLL", "FULLmLL", "mLL") the nEgenes E-genes with the highest likelihood under the given network hypothesis are returned.

Value

I index of selected E-genes

dat subset of original data according to I

patterns significant patterns

nobserved no. of cases per observed pattern

selected selected E-genes

mLL marginal likelihood of a phenotypic hierarchy

pos posterior distribution of effect positions in the hierarchy

mappos Maximum a posteriori estimate of effect positions

LLperGene likelihood per selected E-gene

set.default.parameters 27

Author(s)

Holger Froehlich

See Also

```
nem, score, mLL, FULLmLL
```

Examples

```
# Drosophila RNAi and Microarray Data from Boutros et al, 2002
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]

# enumerate all possible models for 4 genes
Sgenes = unique(colnames(D))
models <- enumerate.models(Sgenes)

getRelevantEGenes(models[[64]], D, control=set.default.parameters(Sgenes, para=c(.13,...))</pre>
```

```
set.default.parameters
```

Get/set hyperparameters

Description

Allows to set and retrieve various hyperparameters for different inference methods.

Usage

```
set.default.parameters(Sgenes, ...)
```

Arguments

```
Sgenes character vector of S-gene identifiers
... parameters to set (see details)
```

Details

Since version 2.5.4 functions in the nem package do not have any more a large amount of individual parameters. Instead there is just one hyperparameter, which is passed to all functions. Parameter values with the hyperparameter can be set with this function.

type mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP or gnem. CONTmLLDens and CONTmLLRatio are identical to CONTmLLBayes and CONTmLLMAP and are still supported for compatibility reasons. mLL and FULLmLL are used for binary data (see BoutrosRNAiDiscrete) and CONTmLL for a matrix of effect probabilities. CONTmLLBayes and CONTmLLMAP are used, if log-odds ratios, p-value densities or any other model specifies effect likelihoods. CONTmLLBayes refers to an inference scheme, were the linking positions of effect reporters to network nodes are integrated out, and CONTmLLMAP to an inference scheme, were a MAP estimate for the linking positions is calculated. depn indicates Deterministic Effects Propagation Networks (DEPNs).

para vector of length two: false positive rate and false negative rate for binary data. Used by mll hyperpara vector of length four: used by Fullmll () for binary data

Pe prior of effect reporter positions in the phenotypic hierarchy (same dimension as D). Not used type gnem. Default: NULL

Pm prior over models (n x n matrix). Default: NULL

Pmlocal local model prior for pairwise and triple learning. For pairwise learning generated by local.model.prioraccording to arguments local.prior.size and local.prior.bias

local.prior.size prior expected number of edges in the graph (for pairwise learning). Default: no. nodes

local.prior.bias bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)

triples.thrsh threshold for model averaging to combine triple models for each edge. Default: 0.5

lambda regularization parameter to incorporate prior assumptions. May also be a vector of possible values, if nemModelSelection is used, Default: 0 (no regularization)

delta regularization parameter for automated subset selection of effect reporters (CONTmLLMAP only). Default: 1/no. nodes

selEGenes automated E-gene subset selection (includes tuning of delta for CONTmLLMAP). Default: FALSE

trans.close Should always transitive closed graphs be computed? Default: TRUE. NOTE: This has only an impact for type nem.greedyMAP and gnem. Default: TRUE

backward.elimination For module networks and greedy hillclimbing inference: Try to eliminate edges increasing the likelihood. Works only, if trans.close=FALSE. Default: FALSE

mode For Bayesian network inference and GNEMs: binary_ML: effects come from a binomial distribution - ML learning of parameters (Bayesian networks only); binary_Bayesian: effects come from a binomial distribution - Bayesian learning of parameters (Bayesian networks only); continous_ML: effects come from a normal distribution - ML learning of parameters; continous_Bayesian: effects come from a normal distribution - Bayesian learning of parameters.

nu.intervention, lambda.intervention For gnem: For any perturbed node we suppose the unknown mean mu given its unknown variance sigma2 to be drawn from N(nu.intervention, sigma2/lambda.intervention). Default: nu.intervention=0.6, lambda.intervention=4

nu.no_intervention, lambda.no_intervention The same parameters for unperturbed nodes. Default: nu.no_intervention=0.95, lambda.no_intervention=4

df.intervention, scale.intervention For gnem: The unknown variance sigma 2 for perturbed nodes is supposed to be drawn from Inv- χ^2 (df.intervention, scale.intervention). Default: df.intervention=4.4, scale.intervention=4.4

df.no_intervention, scale.no_intervention The same parameters for unperturbed nodes. Default: df.no_intervention=4.4, scale.no_intervention=0.023

map For gnem: Mapping of interventions to network nodes. The format is a named list of strings with names being the interventions and entries being the network nodes. Default: Entries and names are the network nodes.

outputdir Directory where to put diagnostic plots. Default: folder "QualityControl" in current working directory

debug Print out or plot diagnostic information. Default: FALSE

Value

A list containing all parameters described above.

sim.intervention 29

Author(s)

```
Holger Froehlich http://www.dkfz.de/mga2/people/froehlich
```

Examples

```
control = set.default.parameters(LETTERS[1:5], type="CONTmLLBayes", selEGenes=TRUE) # set
```

sim.intervention

Simulate interventions in a Nested Effects Model

Description

Simulates a knock-down of a list of network nodes and returns the network nodes and effect reporters, where effects are expected.

Usage

```
sim.intervention(x, int)
```

Arguments

x nem object

int a character vector of nodes in the network

Value

list with two slots:

```
Sgenes.effected
```

effected network nodes

Egenes.effected

effected downstream effect reporters

Author(s)

Holger Froehlich

Examples

```
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
res = nem(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05)))
sim.intervention(res, "rel") # simulate knock-down of rel</pre>
```

30 transitive.closure

subsets	Subsets
---------	---------

Description

subsets

Usage

```
subsets(n, r, v = 1:n, set = TRUE)
```

Arguments

n	bli
r	bla
V	blo
set	blu

Details

taken from the programmers corner of some R-News issue by Dennis

Value

```
n bli
r bla
v blo
```

Author(s)

Dennis Kostka <URL: http://www.molgen.mpg.de/~kostka>

Examples

```
## bla
```

```
transitive.closure Computes the transitive closure of a directed graph
```

Description

Computes the transitive closure of a graph. Introduces a direct edge whenever there is a path between two nodes in a digraph.

Usage

```
transitive.closure(g, mat=FALSE, loops=TRUE)
```

transitive.projections 31

Arguments

g graphNEL object or adjacency matrix.

mat convert result to adjacency matrix.

loops Add loops from each node to itself?

Details

This function calculates the transitive closure of a given graph. We use the matrix exponential to find the transitive closure.

Value

returns a graphNEL object or adjacency matrix

Author(s)

Florian Markowetz <URL: http://genomics.princeton.edu/~florian>

See Also

```
transitive.reduction
```

Examples

```
V <- LETTERS[1:3]
edL <- list(A=list(edges="B"), B=list(edges="C"), C=list(edges=NULL))
g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")
gc <- transitive.closure(g, loops=FALSE)

par(mfrow=c(1,2))
plot(g,main="NOT transitively closed")
plot(gc,main="transitively closed")</pre>
```

transitive.projections

Computes the transitive approximation of a directed graph

Description

Computes the transitive approximation of a graph. The transitive approximation of a graph is a graph that is "almost" transitively closed and has minimal distance to the input graph.

Usage

```
transitive.projections(adjmat)
```

Arguments

adjmat graphNEL object or adjacency matrix.

32 transitive.reduction

Value

returns adjacency matrices and having minimal graph distance to the input graph matrix

Author(s)

Juby Jacob

See Also

```
transitive.projections
```

transitive.reduction

Computes the transitive reduction of a graph

Description

transitive.reduction removes direct edges, which can be explained by another path in the graph. Regulation directions inferred via infer.edge.type are taken into account.

Usage

```
transitive.reduction(g)
```

Arguments

g

adjacency matrix

Details

transitive.reduction uses a modification of the classical algorithm from the Sedgewick book for computing transitive closures. The so-called "transitive reduction" is neither necessarily unique (only for DAGs) nor minimal in the number of edges (this could be improved).

Value

returns an adjacency matrix with shortcuts removed

Author(s)

Holger Froehlich

References

R. Sedgewick, Algorithms, Pearson, 2002.

See Also

```
transitive.closure, infer.edge.type
```

transitive.reduction 33

Examples

```
V <- LETTERS[1:3]
edL <- list(A=list(edges=c("B","C")),B=list(edges="C"),C=list(edges=NULL))
gc <- new("graphNEL",nodes=V,edgeL=edL,edgemode="directed")
g <- transitive.reduction(gc)

par(mfrow=c(1,2))
plot(gc,main="shortcut A->C")
plot(as(g,"graphNEL"),main="shortcut removed")
```

Index

*Topic datasets	BoutrosRNAi2002, 2, 14, 15, 24
BoutrosRNAi2002,2	BoutrosRNAiDens
SahinRNAi2008, 23	(BoutrosRNAi2002), 2
*Topic graphs	BoutrosRNAiDiscrete
BFSlevel, 1	(BoutrosRNAi2002), 2
enumerate.models, 3	BoutrosRNAiExpression
generateNetwork, 4	(BoutrosRNAi2002), 2
nem, 18	BoutrosRNAiLods
nem.bootstrap,9	(BoutrosRNAi2002), 2
nem.consensus, 11	BoutrosRNAiLogFC
nem.cont.preprocess, 13	(BoutrosRNAi2002), 2
nem.discretize, 14	bum.dalt(internal),8
nemModelSelection, 16	bum.EM(internal),8
network.AIC, 19	bum.histogram(internal),8
plotEffects, 20	bum.mle(internal),8
prune.graph, 22	bum.negLogLik(internal), 8
SCCgraph, 24	bum.palt(internal), 8
set.default.parameters, 27	bum.qalt(internal),8
subsets, 30	bum.ralt(internal),8
transitive.closure, 30	Dam. Tate (Internat), 0
transitive.projections, 31	CheckEdge
transitive.reduction, 32	(transitive.projections),
*Topic models	31
closest.transitive.greedy, 3	closest.transitive.greedy, 3
generateNetwork, 4	connectModules (internal), 8
getDensityMatrix, 6	createBN (internal), 8
getRelevantEGenes, 25	
infer.edge.type, 7	dat.normalized(SahinRNAi2008), 23
internal, 8	dat.unnormalized(SahinRNAi2008),
local.model.prior,8	23
nem, 18	data.likelihood(internal),8
nem.bootstrap,9	dbum(internal),8
nem.calcSignificance, 10	distdecrease
nem.consensus, 11	(transitive.projections),
nem.cont.preprocess, 13	31
nem.discretize, 14	distincrease
	(transitive.projections),
nem.jackknife, 15 nemModelSelection, 16	31
plot.nem, 21	distincreasel
-	(transitive.projections),
set.default.parameters, 27	31
sim.intervention, 29	distsame
BFSlevel, 1	(transitive.projections),
binom.test,7	31
DIIIOIII • CEBC, /	JI

INDEX 35

EdgeEk(transitive.projections), 31	$\begin{array}{c} \texttt{nemModelSelection}, 10, 12, \textbf{16}, 16, 19, \\ 20 \end{array}$
effect.likelihood(internal),8	network.AIC, 17, 19
encode.interventions(internal),8	
enumerate.models,3	OneNeighborhood
enumerate.models2(internal),8	(transitive.projections),
erase.cycles(internal),8	31
exhaustive_BN(internal),8	optimizecoregraph(internal),8
	optimizemarginal(internal),8
filterEGenes(getRelevantEGenes),	
25	pairwise.posterior,9
fit.BN(internal),8	pairwise.posterior(internal),8
fitBUM(internal),8	parameters_continuous_Bayesian
FourNeighborhood	(internal),8
(transitive.projections),	parameters_continuous_ML
31	(internal),8
FULLmLL, 27	parameters_discrete_Bayesian
FULLmLL(internal),8	(internal), 8
	parameters_discrete_ML
generateNetwork,4	(internal), 8
getComponent(internal),8	pbum(internal),8
getDensityMatrix, $6,6$	PhiDistr(internal), 8
getRelevantEGenes, 25	plot.ModuleNetwork (plot.nem), 21
graychange(internal),8	plot.nem, 19, 21
	plot.nem, 19, 21 plot.pairwise (plot.nem), 21
infer.edge.type, 7 , <i>22</i> , <i>32</i>	plot.score(plot.nem), 21
ingreed_BN (internal), 8	plot.score (plot.nem), 21 plot.triples (plot.nem), 21
internal, 8	
inv.logit(internal),8	plotEffects, 20, 22
is.dag(internal),8	plotnem (plot.nem), 21
is.transitive	print.ModuleNetwork (nem), 18
(transitive.projections),	print.nem(nem), 18
31	print.nem.bootstrap
	(nem.bootstrap),9
learn(internal),8	print.nem.consensus
local.model.prior, 8, 19	(nem.consensus), 11
logit(internal), 8	print.nem.jackknife
	(nem.jackknife), 15
map.int2node(SahinRNAi2008), 23	print.pairwise(nem), 18
mLL, 27	print.score (nem), 18
mLL(internal),8	print.triples (nem), 18
moduleNetwork(internal),8	prune.graph, 3 , 22
nem, 4, 9–12, 16, 17, 18, 22, 25, 27	qbum(internal),8
nem.BN($internal$), 8	qqbum(internal),8
nem.bootstrap, 9, 11, 12, 16, 19	
nem.calcSignificance, 10, 10, 12	rbum(internal),8
nem.consensus, 10, 11, 11, 16, 19	remTwoEdges
nem.cont.preprocess, 13	(transitive.projections),
nem.discretize, 2, 14	31
nem.featureselection(internal),8	
nem.greedy(internal),8	SahinRNAi2008, 23
nem.greedyMAP(internal),8	sample.effect.likelihood
nem.jackknife, 10-12, 15, 19	(internal),8

36 INDEX

```
sample.likelihood(internal), 8
sampleData(generateNetwork), 4
sampleRndNetwork
       (generateNetwork), 4
SCCgraph, 24
score, 27
score (internal), 8
score_BN (internal), 8
score_continuous_Bayesian
      (internal), 8
score_continuous_ML(internal), 8
score_discrete_Bayesian
       (internal), 8
score_discrete_ML(internal), 8
selectEGenes (getRelevantEGenes),
set.default.parameters, 17, 19, 27
sim.intervention, 29
sim.interventions(internal),8
subsets, 30
ThreeNeighborhood
       (transitive.projections),
transitive.closure, 3, 30, 32
transitive.projections, 31,32
transitive.reduction, 3, 25, 31, 32
transSubGr
       (transitive.projections),
       31
triples.posterior(internal), 8
TwoNeighborhood
       (transitive.projections),
       31
VecToMat
       (transitive.projections),
       31
which.is.max(internal), 8
```