gpls

April 19, 2010

glplsla.cv.error Leave-one-out cross-validation error using IRWPLS and IRWPLSF model

Description

Leave-one-out cross-validation training set classification error for fitting IRWPLS or IRWPLSF model for two group classification

Usage

```
glpls1a.cv.error(train.X,train.y, K.prov=NULL,eps=1e-3,lmax=100,family="binomial
```

Arguments

train.X	n by p design matrix (with no intercept term) for training set
train.y	response vector (0 or 1) for training set
K.prov	number of PLS components, default is the rank of train.X
eps	tolerance for convergence
lmax	maximum number of iteration allowed
family	glm family, binomial is the only relevant one here
link	link function, logit is the only one practically implemented now
br	TRUE if Firth's bias reduction procedure is used

Value

error	LOOCV training error
error.obs	the misclassified error observation indices

Author(s)

Beiying Ding, Robert Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

2 glpls1a.logit.all

See Also

```
glplsla.train.test.error,glplsla.mlogit.cv.error,glplsla,glplsla.mlogit,glplsla.l
```

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)

## no bias reduction
glplsla.cv.error(x,y,br=FALSE)
## bias reduction and 1 PLS component
glplsla.cv.error(x,y,K.prov=1, br=TRUE)</pre>
```

glplsla.logit.all Fit MIRWPLS and MIRWPLSF model separately for logits

Description

Apply Iteratively ReWeighted Least Squares (MIRWPLS) with an option of Firth's bias reduction procedure (MIRWPLSF) for multi-group (say C+1 classes) classification by fitting logit models for all C classes vs baseline class separately.

Usage

```
glpls1a.logit.all(X, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, de
```

Arguments

X	n by p design matrix (with no intercept term)
У	response vector with class lables 1 to C+1 for C+1 group classification, baseline class should be 1 $$
K.prov	number of PLS components
eps	tolerance for convergence
lmax	maximum number of iteration allowed
b.ini	initial value of regression coefficients
denom.eps	small quanitity to guarantee nonzero denominator in deciding convergence
family	glm family, binomial (i.e. multinomial here) is the only relevant one here
link	link function, logit is the only one practically implemented now

TRUE if Firth's bias reduction procedure is used

Value

br

```
coefficients
```

regression coefficient matrix

Author(s)

Beiying Ding, Robert Gentleman

glpls1a.mlogit.cv.error 3

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a.mlogit,glpls1a,glpls1a.mlogit.cv.error,glpls1a.train.test.error,
glpls1a.cv.error
```

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)
## no bias reduction
glpls1a.logit.all(x,y,br=FALSE)
## bias reduction
glpls1a.logit.all(x,y,br=TRUE)</pre>
```

```
glpls1a.mlogit.cv.error
```

Leave-one-out cross-validation error using MIRWPLS and MIRW-PLSF model

Description

Leave-one-out cross-validation training set error for fitting MIRWPLS or MIRWPLSF model for multi-group classification

Usage

```
glplsla.mlogit.cv.error(train.X, train.y, K.prov = NULL, eps = 0.001,lmax = 100,
```

Arguments

train.X	n by p design matrix (with no intercept term) for training set
train.y	response vector with class lables 1 to C+1 for C+1 group classification, baseline class should be 1 $$
K.prov	number of PLS components
eps	tolerance for convergence
lmax	maximum number of iteration allowed
mlogit	if TRUE use the multinomial logit model, otherwise fit all C-1 logistic models (vs baseline class 1) separately
br	TRUE if Firth's bias reduction procedure is used

Value

error	LOOCV training error
error.obs	the misclassified error observation indices

4 glpls1a.mlogit

Author(s)

Beiying Ding, Robert Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a.cv.error,glpls1a.train.test.error,glpls1a,glpls1a.mlogit,glpls1a.logit.al
```

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)

## no bias reduction
glplsla.mlogit.cv.error(x,y,br=FALSE)
glplsla.mlogit.cv.error(x,y,mlogit=FALSE,br=FALSE)
## bias reduction
glplsla.mlogit.cv.error(x,y,br=TRUE)
glplsla.mlogit.cv.error(x,y,mlogit=FALSE,br=TRUE)</pre>
```

glpls1a.mlogit

Fit MIRWPLS and MIRWPLSF model

Description

Fit multi-logit Iteratively ReWeighted Least Squares (MIRWPLS) with an option of Firth's bias reduction procedure (MIRWPLSF) for multi-group classification

Usage

```
glpls1a.mlogit(x, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom
```

Arguments

X	n by p design matrix (with intercept term)
У	response vector with class lables 1 to C+1 for C+1 group classification, baseline class should be 1
K.prov	number of PLS components
eps	tolerance for convergence
lmax	maximum number of iteration allowed
b.ini	initial value of regression coefficients
denom.eps	small quanitity to guarantee nonzero denominator in deciding convergence
family	glm family, binomial (i.e. multinomial here) is the only relevant one here
link	link function, logit is the only one practically implemented now
br	TRUE if Firth's bias reduction procedure is used

glpls1a 5

Value

```
coefficients
regression coefficient matrix
convergence whether convergence is achieved
niter total number of iterations
bias.reduction
whether Firth's procedure is used
```

Author(s)

Beiying Ding, Robert Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a,glpls1a.mlogit.cv.error,glpls1a.train.test.error,glpls1a.cv.error
```

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)
## no bias reduction and 1 PLS component
glpls1a.mlogit(cbind(rep(1,10),x),y,K.prov=1,br=FALSE)
## bias reduction
glpls1a.mlogit(cbind(rep(1,10),x),y,br=TRUE)</pre>
```

glpls1a

Fit IRWPLS and IRWPLSF model

Description

Fit Iteratively ReWeighted Least Squares (IRWPLS) with an option of Firth's bias reduction procedure (IRWPLSF) for two-group classification

Usage

6 glpls1a

Arguments

X n by p design matrix (with no intercept term)

y response vector 0 or 1

K.prov number of PLS components, default is the rank of X

eps tolerance for convergence

lmax maximum number of iteration allowed b.ini initial value of regression coefficients

denom.eps small quantity to guarantee nonzero denominator in deciding convergence

family glm family, binomial is the only relevant one here

link link function, logit is the only one practically implemented now

br TRUE if Firth's bias reduction procedure is used

Value

coefficients

regression coefficients

convergence whether convergence is achieved

niter total number of iterations

bias.reduction

whether Firth's procedure is used

Author(s)

Beiying Ding, Robert Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a.mlogit,glpls1a.logit.all,glpls1a.train.test.error,glpls1a.cv.error,
glpls1a.mlogit.cv.error
```

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
## no bias reduction
glpls1a(x,y,br=FALSE)
## no bias reduction and 1 PLS component
glpls1a(x,y,K.prov=1,br=FALSE)
## bias reduction
glpls1a(x,y,br=TRUE)</pre>
```

glpls1a.train.test.error 7

```
glpls1a.train.test.error
```

out-of-sample test set error using IRWPLS and IRWPLSF model

Description

Out-of-sample test set error for fitting IRWPLS or IRWPLSF model on the training set for two-group classification

Usage

```
glplsla.train.test.error(train.X,train.y,test.X,test.y,K.prov=NULL,eps=1e-3,lmax
```

Arguments

train.X	n by p design matrix (with no intercept term) for training set
train.y	response vector (0 or 1) for training set
test.X	transpose of the design matrix (with no intercept term) for test set
test.y	response vector (0 or 1) for test set
K.prov	number of PLS components, default is the rank of train.X
eps	tolerance for convergence
lmax	maximum number of iteration allowed
family	glm family, binomial is the only relevant one here
link	link function, $\log it$ is the only one practically implemented now
br	TRUE if Firth's bias reduction procedure is used

Value

```
error out-of-sample test error
error.obs the misclassified error observation indices
predict.test the predicted probabilities for test set
```

Author(s)

Beiying Ding, Robert Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a.cv.error,glpls1a.mlogit.cv.error,glpls1a,glpls1a.mlogit,glpls1a.logit.all
```

8 gpls

Examples

```
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
x1 <- matrix(rnorm(10),ncol=2)
y1 <- sample(0:1,5,TRUE)

## no bias reduction
glplsla.train.test.error(x,y,x1,y1,br=FALSE)
## bias reduction
glplsla.train.test.error(x,y,x1,y1,br=TRUE)</pre>
```

gpls

A function to fit Generalized partial least squares models.

Description

Partial least squares is a commonly used dimension reduction technique. The paradigm can be extended to include generalized linear models in several different ways. The code in this function uses the extension proposed by Ding and Gentleman, 2004.

Usage

Arguments

х	The matrix of covariates.
formula	A formula of the form 'y \sim x1 + x2 +', where y is the response and the other terms are covariates.
У	The vector of responses
data	A data.frame to resolve the forumla, if used
K.prov	number of PLS components, default is the rank of X
eps	tolerance for convergence
lmax	maximum number of iteration allowed
b.ini	initial value of regression coefficients
denom.eps	small quantitity to guarantee nonzero denominator in deciding convergence
family	glm family, binomial is the only relevant one here
link	link function, logit is the only one practically implemented now

gpls 9

```
TRUE if Firth's bias reduction procedure is usedAdditional arguements.an optional list. See the contrasts.arg of model.matrix.default.
```

Details

This is a different interface to the functionality provided by glplsla. The interface is intended to be simpler to use and more consistent with other matchine learning code in R.

The technology is intended to deal with two class problems where there are more predictors than cases. If a response variable (y) is used that has more than two levels the behavior may be unusual.

Value

An object of class gpls with the following components:

```
coefficients The estimated coefficients.

convergence A boolean indicating whether convergence was achieved.

niter The total number of iterations.

bias.reduction
A boolean indicating whether Firth's procedure was used.

family The family argument that was passed in.

link The link argument that was passed in.

terms The constructed terms object.

call The call

levs The factor levels for prediction.
```

Author(s)

B. Ding and R. Gentleman

References

- Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
- Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. *Technometrics* 38(4): 374-381.

See Also

```
glpls1a
```

Examples

```
library(MASS)
m1 = gpls(type~., data=Pima.tr, K=3)
```

10 predict.gpls

predict.gpls

A prediction method for gpls.

Description

A simple prediction method for gpls objects.

Usage

```
## S3 method for class 'gpls':
predict(object, newdata, ...)
```

Arguments

object A gpls object, typically obtained from a call to gpls newdata New data, for which predictions are desired.

... Other arguments to be passed on

Details

The prediction method is straight forward. The estimated coefficients from object are used, together with the new data to produce predicted values. These are then split, according to whether the predicted values is larger or smaller than 0.5 and predictions returned.

The code is similar to that in glplsla.train.test.error except that in that function both the test and train matrices are centered and scaled (the covariates) by the same values (those from the test data set).

Value

A list of length two:

class The predicted classes; one for each row of newdata. predicted The estimated predictors.

Author(s)

B. Ding and R. Gentleman

See Also

```
gpls
```

Examples

```
example(gpls)
p1 = predict(m1)
```

Index

```
*Topic classif
   gpls, 8
   predict.gpls, 10
*Topic regression
   glpls1a,5
   glpls1a.cv.error, 1
   glpls1a.logit.all, 2
   glpls1a.mlogit,4
   glpls1a.mlogit.cv.error,3
   glpls1a.train.test.error,7
glpls1a, 2-4, 5, 5, 7, 9
glplsla.cv.error, 1, 3-7
glplsla.logit.all, 2, 2, 4, 6, 7
glpls1a.mlogit, 2, 3, 4, 4, 6, 7
glpls1a.mlogit.cv.error, 2, 3, 3, 5-7
glpls1a.train.test.error, 2-6,7,10
gpls, 8, 10
predict,gpls-method
       (predict.gpls), 10
predict.gpls, 10
print.gpls(gpls),8
```