HTqPCR

April 19, 2010

clusterCt

Clustering of gPCR Ct values

Description

Hierarchical clustering of samples or genes from high-throuhgput qPCR experiments, such as the
TagMan Low Density Array platform. Individual clusters can be selected, and the features within
them listed in the given order.

Usage

clusterCt (g,

Arguments

q
main

type
dist

xlab
n.cluster

h.cluster

main = NULL, type = "genes", dist = "pearson", xlab =

object of class qPCRset.
character string, plot title.

character string, either "genes" (default) or "samples", indicating what is to be
clustered.

character string, specifying whether to use "pearson" correlation (default) or
"euclidean" distance for the clustering.

character string, label for the x-axis.
integer, the number of cluster to divide the dendrogram into. See details.

numeric, the height at which to cut the dendrogram into clusters. See details.

select.cluster

Details

logical, whether to select clusters interactively. See details.

any other arguments will be passed to the plot function.

This function may be used to cluster the Ct values and present the result as a dendrogram.

The n.cluster and h.cluster parameters are from the rect .hclust function and can

be used to divide the dendrogram into subclusters based on either number of clusters or height of

branch, drawing boxes around subclusters. The members of each cluster can be returned (see value).
If n.cluster is specified h.cluster will be ignored.

"Cluster denc

2 filterCategory

If select.cluster is chosen individual subclusters can be selected and marked by a box by
clicking on their highest comment branch with the (first) mouse buttom. Multiple clusters can be
selected until any mouse button other than the first is pressed, and the function can be used in
conjunction with either n.cluster or h.cluster. The members of each cluster will likewise
be returned, in the order they were selected.

Value

A plot is created on the current graphics device. If any subclusters are marked, these will be returned
invisibly in a list, with one component for each subcluster. The individual slots in the list contain
the names og the genes, and their position in the original input data (row number).

Author(s)

Heidi Dvinge

See Also

hclust,dist, rect.hclust, identify.hclust

Examples

Load example data

data (gPCRraw)

Clustering samples

clusterCt (gPCRraw, type="samples")

clusterCt (qPCRraw, type="samples", dist="euclidean")

Clustering genes

clusterCt (qPCRraw, type="genes", cex=0.5)

clusterCt (qgPCRraw, type="genes", h.cluster=1.5, cex=0.5)

cluster.list <- clusterCt (gpPCRraw, type="genes", n.cluster=6, cex=0.5)
cluster.list[[11]]

filterCategory Filter Ct values based on their feature categories.

Description

Ct values corresponding to selected feature categories will be replaced by NA. Generally, the feature
categories indicate how reliable the values are.

Usage

filterCategory (g, na.categories = c("Unreliable", "Undetermined"))
Arguments

q a qPCRset object.

na.categories
character vector, with the name(s) of the feature categories where Ct values will
be considered NA.

filterCtData

Value

A gPCRset object like the input, but with the selected Ct values replaced by NAs

Author(s)

Heidi Dvinge

See Also

setCategory for adjusting the categories.

Examples

data (gPCRraw)

gPCRraw2 <- setCategory (gPCRraw, groups=NULL)
x <- filterCategory (gPCRraw2)

summary (gPCRraw)

summary (x)

filterCtData Filter out features (genes) from gPCR data.

Description

This function is for filtering Ct data from high-throughput qPCR platforms like the TagMan Low
Density Arrays. This can for example be done prior to analysing the statistical significance of the
data, to remove genes where the results are of low quality, or that are not of interest to the analysis
in question.

Usage

filterCtData (g, remove.type, remove.name, remove.class, remove.category,

Arguments

d

remove.
remove

remove

remove

object of class qPCRset.

type character vector, the feature type(s) to be removed from the data object.

.name character vector, the feature name(s) to be removed from the data object.

.class character vector, the feature class(es) to be removed from the data object.
.category

character vector, the features categories(s) to be assessed across samples.

n.category numeric, all features with more than this number of remove . category across

remove.

verbose

samples are removed.

IQR numeric, all features with an interquartile range (IQR) below this limit across
samples will be removed.

boolean, should some information be printed to the prompt.

n.cateo

4 filterCtData

Details

This function may be used to exclude individual or small groups of features that are irrelevant to a
given analysis. However, it can also be used on a more general basis, to for example split the data
into separate gPCRset objects based on features with different characteristics, such as groups of
markers or other gene classes present in featureClass.

remove . IQR can be used to exclude features that show only little variation across the samples.
These are unlikely to be differentially expressed, so including them in downstream analysis such as
limmaCtData or ttestCtData would result in a slight loss of power caused by the adjustment
of p-values required due to multiple testing across all features.

Value

An object of class qPCRset like the input, but with the required features removed.

Note

After removing features the function plotCtCard will no longer work, since the number of fea-
tures is now smaller than the card dimensions.

When using remove.category or remove . IQR and there are replicated features present on
the array, it might no longer be possible to use the ndups parameter of 1 immaCtData, since the
number of replicates isn’t identical for each feature.

Filtering can be performed either before or after normalization, but in some cases normalization
might be affected by this, for example if many features are removed, making it difficult to identify
rank-invariant genes.

Author(s)

Heidi Dvinge

Examples

Load some example data

data (gPCRpros)

show (QPCRpros)

Filter based on different feature type

gFilt <- filterCtData (gqPCRpros, remove.type=c ("Endogenous Control"))

Filter based on feature type and name

gFilt <- filterCtData (gPCRpros, remove.type=c ("Endogenous Control"), remove.name=c ("Genel
Filter based on feature class

gFilt <- filterCtData (gPCRpros, remove.class="Kinase")

Filter based on feature categories, using two different cut-offs

gFilt <- filterCtData (gPCRpros, remove.category="Undetermined")

gFilt <- filterCtData (gPCRpros, remove.category="Undetermined", n.category=5)
Remove features without much variation across samples

igr <- apply(exprs (gPCRpros), 1, IQR, na.rm=TRUE)

hist (igr, n=20)

gFilt <- filterCtData (gPCRpros, remove.IQR=2)

heatmapSig 5

heatmapSig Heatmap of deltadeltaCt values from gPCR data.

Description

Heatmap and clustering of deltadeltaCt values from different sample comparisons using qPCR data.

Usage

heatmapSig (gDE, comparison = "all", col, zero.center = TRUE, mar, dist = "pearsc
Arguments

gqDE data.frame or list, as created by ttestCtData or limmaCtData.

comparison integers or the names of the comparisons to include in the plot. Deaults to all
results in the gDE data, but a minimum of two is required.

col colour scheme to use for the plot.
zero.center logical, should the colour scale be centered around 0.
mar vector of length two, the bottom and right side margins mof the heatmap.

dist character string, either "pearson" (default) or "euclidean" indicating what type
of distance is used for the clustering.

further arguments passed to heatmap. 2.

Details

This function can be useful if multiple conditions are compared, for detecting features with similar
behaviour in comparisons, and look at the general level of up and down regulation.

Value

A plot if produced in the current graphics device.

Author(s)
Heidi Dvinge

See Also

heatmap. 2 for modifying the plot, and ttestCtData or limmaCtData for generating the
data used for the plotting.

Examples

Load example preprocessed data

data (gPCRpros)

samples <- read.delim(file.path(system.file ("exData", package="HTgPCR"), "files.txt"))

Define design and contrasts

design <- model.matrix (~0O+samplesS$Treatment)

colnames (design) <- c("Control", "LongStarve", "Starve")

contrasts <- makeContrasts (LongStarve-Control, LongStarve-Starve, Starve-Control, levelss=
Reorder data to get the genes in consecutive rows

6 HTqPCR-package

temp <- gPCRpros[order (featureNames (gPCRpros)),]

The actual test

gDE <- limmaCtData (temp, design=design, contrasts=contrasts, ndups=2, spacing=1l)
Plotting the heatmap

heatmapSig (gDE)

heatmapSig (gDE, dist="euclidean")

HTgPCR-package Analysis of High-Throughput gPCR data (HTgPCR)

Description

This package is for analysing high-throughput qPCR data. Focus is on data from Tagman Low Den-
sity Arrays, but any kind of qPCR performed across several samples is applicable. Cycle threshold
(Ct) data from different cards (samples) is read in, normalised, processed and the genes are tested
for differential expression across different samples. Results are visualised in various ways.

Details
Package: HTqPCR
Type: Package
Version: 1.0
Date: 2009-07-03
License: Artistic
LazyLoad: yes
Depends: methods
Author(s)

Maintainer: Heidi Dvinge <heidi@ebi.ac.uk> Maintainer: Paul Bertone <bertone @ebi.ac.uk>

Examples

Locate example data and create gPCRset object

exPath <- system.file ("exData", package="HTgPCR")

exFiles <- read.delim(file.path(exPath, "files.txt"))

raw <- readCtData(files=exFiles$File, path=exPath)

Preprocess

raw.cats <- setCategory(raw, groups=exFilesS$Treatment, plot=FALSE)
norm <- normalizeCtData (raw.cats, norm="scale.rank")

Various plots

plotCtDensity (norm)

plotCtBoxes (norm)

plotCtOverview (norm, groups=exFiles$Treatment, genes=featureNames (raw) [1:10], calibrators=
plotCtCor (norm)

plotCtScatter (norm, cards=c(l,4), col="type")

Define design and contrasts for testing differential expression
design <- model.matrix (~0+exFiles$Treatment)

colnames (design) <- c("Control", "LongStarve", "Starve")

limmaCtData 7

contrasts <- makeContrasts(LongStarve-Control, LongStarve-Starve, Starve-Control, levels=
Reorder by featureNames (2 replicates of each feature) and the actual test

norm2 <- norm[order (featureNames (norm)),]

diff.exp <- limmaCtData (norm2, design=design, contrasts=contrasts, ndups=2, spacing=1)

Some of the results

names (diff.exp)

diff.exp[["LongStarve - Control"]]([1:10,]

diff.exp[["Summary"]][1:10,]

Some plots of results

plotCtRQ (diff.exp, genes=1:10)

plotCtSignificance (gDE=diff.exp, g=norm2, groups=exFiles$Treatment, calibrator="Control",

plotCtSignificance (gDE=diff.exp, g=norm2, comparison="LongStarve - Starve", groups=exFile
limmaCtData Differentially expressed features with gPCR: limma
Description

Function for detecting differentially expressed genes from high-throughput gPCR Ct values, based
on the framework from the 1 imma package. Multiple comparisons can be performed, and across
more than two groups of samples.

Usage

limmaCtData (g, design = NULL, contrasts, sort = TRUE, stringent = TRUE, ndups =

Arguments
q object of class qPCRset.
design matrix, design of the experiment rows corresponding to cards and columns to
coefficients to be estimated. See details.
contrasts matrix, with columns containing contrasts. See details
sort boolean, should the output be sorted by adjusted p-values.
stringent boolean, for flagging results as "Undetermined". See details.
ndups integer, the number of times each feature is present on the card.
spacing integer, the spacing between duplicate spots, spacing=1 for consecutive spots
any other arguments are passed to lmFit, contrasts.fit, eBayes or
decideTests.
Details

This function is a wrapper for the functions 1mFit, contrasts.fit (if a contrast matrix is
supplied) and eBayes from the limma package. See the help pages for these functions for more
information about setting up the design and contrast matrices.

All results are assigned to a category, either "OK" or "Unreliable" depending on the input Ct values.
If stringent=TRUE any unreliable or undetermined measurements among technical and biolog-
ical replicates will result in the final result being "Undetermined". For stringent=FALSE the
result will be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.

Note that when there are replicated features in the samples, each feature is assumed to be present
the same number of times, and with regular spacing between replicates. Reordering the sample by
featureNames and setting spacing=1 is recommendable.

8 limmaCtData

Value

A list of data.frames, one for each column in design, or for each comparison in contrasts if
this matrix is supplied. Each component of the list contains the result of the given comparisons,
with one row per gene and has the columns:

genes Feature IDs.

feature.pos The unique feature IDs from featurePos of the g object. Useful if replicates
are not collapsed, in which case there might be several features with identical

names.
t.test The result of the t-test.
p.value The corresponding p.values.

adj.p.value P-values after correcting for multiple testing using the Benjamini-Holm method.

ddct deltadeltaCt values, the log fold changes.
meanTest The average Ct across the test samples for the given comparison.
meanReference

The average Ct across the reference samples for the given comparison.
categoryTest
The category of the Ct values ("OK", "Undetermined") across the test samples
for the given comparison.
categoryReference
The category of the Ct values ("OK", "Undetermined") across the reference sam-
ples for the given comparison.

Also, the last item in the list is called "Summary", and it’s the result of calling decideTests
from limma on the fitted data. This is a data frame with one row per feature and one column per
comparison, with downregulation, no change and upregulation marked by -1, 0 and 1.

Author(s)

Heidi Dvinge

References

Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds), Springer, New York, pages 397-420.

See Also

ImFit, contrasts.fit and ebayes for more information about the underlying limma func-
tions. plotCtRQ, heatmapSig and plotCtSignificance can be used for visualising the
results.

Examples

Load example preprocessed data

data (gPCRpros)

samples <- read.delim(file.path(system.file("exData", package="HTgPCR"), "files.txt"))

Define design and contrasts

design <- model.matrix (~0+samples$Treatment)

colnames (design) <- c("Control", "LongStarve", "Starve")

contrasts <- makeContrasts (LongStarve-Control, LongStarve-Starve, Starve-Control, levels=

normalizeCtData

The actual test
diff.exp <- limmaCtData (gPCRpros, design=design, contrasts=contrasts)

Some of the results

diff.exp[["LongStarve - Control"]]([1:10,]

Example with duplicate genes on card.

Reorder data to get the genes in consecutive rows

temp <- gPCRpros[order (featureNames (gPCRpros)),]

diff.exp <- limmaCtData (temp, design=design, contrasts=contrasts, ndups=2, spacing=1l)
Some of the results

names (diff.exp)

diff.exp[["LongStarve - Control"]][1:10,]
diff.exp[["Summary"]][1:10,]
normalizeCtData Normalization of Ct values from gPCR data.
Description

This function is for normalizing Ct data from high-throughput gPCR platforms like the TagMan
Low Density Arrays. Normalization can be either within or across different samples.

Usage

normalizeCtData (g, norm = "deltaCt", deltaCt.genes = NULL, scale.rank.samples,
Arguments

q object of class qPCRset.

norm character string with partial match allowed, the normalisation method to use.

deltaCt.genes

"non

"deltaCt" (default) , "scale.rankinvariant", "norm.rankinvariant" and "quantile"
are implemented. See details.

character vector, the gene(s) to use for deltaCt normalization. Must correspond
to some of the featureNames in g or NULL, in which case the endogenous
controls from featureType are used.

scale.rank.samples

rank.type

Ct.max

verbose

integer, for the "scale.rankinvariant" method, how many samples should a fea-
ture be rank invariant across to be included. Defaults to number of samples-1.

string, the reference sample for the rank invariant normalisation. Either "pseudo.median"
or "pseudo.mean" for using the median or mean across samples as a pseudo-
reference sample.

numeric, Ct values above this will be ignored when identifying rank invariant
genes.

boolean, should some informaiton be printed to the prompt.

h

10 normalizeCtData

Details

"quantile" will make the expression distributions across all cards more or less identical. "deltaCt"
calculates the standard deltaCt values, i.e. subtracts the mean of the chosen controls from all other
values on the array. "scale.rankinvariant" sorts features from each sample based on Ct values,
and identifies a set of features that remain rank invariant, i.e. whose ordering is constant. The
average of these rank invariant features is then used to scale the Ct values on each array individually.
"norm.rankinvariant" also identifies rank invariant features between each sample and a reference,
and then uses these features to generate a normalisation curve individually for each sample by
smoothing.

For the rank invariant methods it can make a significant difference whether high Ct values, such as
"40" or something else being used for undetermined Ct values is removed during the normalisation
using the Ct.max parameter. "norm.rankinvariant" also depends on having enough rank invariant
genes for generating a robust smoothing curve.

"quantile" is base on normalizeQuantiles from 1 imma, and the rank invariant normalisations
implement methods from normalize.invariantset in package affy.

The distribution of Ct values before/after normalisation can be assessed with the function plotCtDensity.

Value

An object of class qPCRset like the input.

Author(s)
Heidi Dvinge

See Also

normalize.invariantset for the rank invariant normalisations, normalizequantiles
and plotCtDensity

Examples

Load example data

data (gPCRraw)

Perform different normalisations

dnorm <- normalizeCtData (gPCRraw, norm="deltaCt", deltaCt.genes="Genel")

gnorm <- normalizeCtData (gqPCRraw, norm="quantile")

nrnorm <- normalizeCtData (gPCRraw, norm="norm.rankinvariant")

srnorm <- normalizeCtData (qPCRraw, norm="scale.rankinvariant")

Normalized versus raw data

cols <- rep(brewer.pal (6, "Spectral"), each=384)

plot (exprs (gPCRraw), exprs (dnorm), pch=20, col=cols, main="dCt normalization")

plot (exprs (gPCRraw), exprs (gnorm), pch=20, col=cols, main="Quantile normalization")
plot (exprs (qgPCRraw), exprs

plot (exprs (gPCRraw), exprs
With or without removing high Ct values

nrnorm <- normalizeCtData (gPCRraw, norm="norm.rankinvariant")

nrnorm?2 <- normalizeCtData (gPCRraw, norm="norm.rankinvariant", Ct.max=40)

plot (exprs (nrnorm), exprs(nrnorm?2), pch=20, col=cols, xlab="Ct.max = 35", ylab="Ct.max
Distribution of the normalised data

par (mfrow=c (2, 2), mar=c(3,3,2,1))

plotCtDensity (dnorm, main="deltaCt")

plotCtDensity (qnorm, main="quantile")

plotCtDensity (srnorm, main="scale.rankinvariant")

(
(
(
(

nrnorm), pch=20, col=cols, main="Housekeeping genes normalize
srnorm), pch=20, col=cols, main="Rank invariant normalizatior

plotCtBoxes 11

plotCtDensity (nrnorm, main="norm.rankinvariant")

plotCtBoxes Boxplots for gPCR Ct values.

Description

Function for making boxplots of Ct values from high-throughput qPCR data. The boxes can be
made either using all values on each card, or stratified by different feature information.

Usage
plotCtBoxes (q, cards = TRUE, xlab = "", col, main = NULL, names, stratify = "tyg
Arguments
q object of class qPCRset.
cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.
xlab character string, label for the x-axis.
col vector of colours to use, defaults to different colour for each card.
main character string, plot title.
names vector, names to plot under the boxes. Defaults to sample names.
stratify character, specifying what to stratify the Ct values by. NULL, the default means
no stratification, "type" is the feature types of the gPCRset, and "class" the fea-
ture class.
mar vector, the size of the margins. See par for details.
any other arguments will be passed to the boxplot or parfunction.
Details

For the stratified plots all boxes with Ct values from the same card are plotted in identical colours.
"type" and "class" are automatically extracted from the gPCRset using featureType and featureClass.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

boxplot

Examples

Loading the data

data (gPCRraw)

Make plot with all samples or Jjust a few
plotCtBoxes (gPCRraw, stratify=NULL)
plotCtBoxes (gPCRraw, cards=c(1l,4))
plotCtBoxes (gPCRraw, stratify="class")

12 plotCtCard

plotCtCard Image plot of gPCR Ct values from a card format

Description

Function for plotting high-throughput qPCR Ct values from a platform with a defined spatial layout,
such as TagMan Low Density Assay cards. The location of Ct values in the plot corresponds to the
position of each well on the card.

Usage
plotCtCard(g, card = 1, plot = "Ct", main, nrow = 16, ncol = 24, col,
Arguments
q object of class qPCRset.
card integer, the sample number to plot.
plot character string among "Ct", "flag", "type", "class") indicating what type of plot
to produce. See Details for a longer description.
main character string, the title of the plot. Per deault this is the sample name corre-
sponding to card.
nrow integer, the numer of rows on the card (16 for a standard 384 well format).
ncol integer, the numer of columns on the card (24 for a standard 384 well format).
col vector of colors of the same length as the number of different groups for the
categorical data, or the name of a colour scheme for the continuous data.
col.range vector, the range of colours to use.
na.col the colour used for well with NA (undetermined) Ct values.
na.value numeric, if NA has been replaced by an (arbitrary) high Ct value in the data.
legend.cols integer, how many columns should the legend text be split into (defaults to num-
ber of labels).
well.size numeric, for adjusting the size of the wells on the card.

zero.center logical, should the colours be shifted to be zero-centered.
unR logical, should wells from the category "Unreliable" be crossed out.
unD logical, should wells from the category "Undetermined" be crossed out.

any other arguments will be passed to the plot and points functions.

Details

This function may be used to plot the values of any well-specific information, such as the raw or
normalized Ct values, or categorical data such as flag, gene class etc. The image follows the layout
of an actual HTqPCR card.

If unR=TRUE these will wells will be crossed out using a diagonal cross (X), whereas unD=TRUE
will be marked with a horisontal/vertical cross.

Value

A plot is created on the current graphics device.

col.range,

plotCtCategory

Author(s)

Heidi Dvinge

See Also

image

Examples

13

Load some example data

data (gPCRraw)

Plot Ct values from first card

plotCtCard (gPCRraw)

plotCtCard (gPCRraw, card=2, col.range=c(10,35))
plotCtCard (gPCRraw, unR=TRUE, unD=TRUE)

Other examples

plotCtCard (gPCRraw, plot="class")

plotCtCard (gPCRraw, plot="type")

plotCtCard (gPCRraw, plot="flag")

plotCtCategory

Summarising the feature categories for Ct values.

Description

This function will provide a summary of the featureCategory for a qPCRset. Focus can either
be on categories across samples, or across features.

Usage

plotCtCategory (g, cards = TRUE, by.feature = FALSE, stratify, col, xlim,

Arguments

g

cards

by.feature

stratify

col

x1lim

main

object of class gPCRset.
integers, the number of the cards (samples) to plot.

logical, should the categories be summarised for features rather than samples.
See details.

character string, either "type" or "class" indicating if the categories should be
stratified by featureType or featureClass of g. Ignoredif by . features
is TRUE.

vector with the colours to use for the categories. Default is green for "OK",
yellow for "Unreliable" and red for "Undetermined".

vector, the limits of the x-axis. If by . feature is FALSE, this can be used to
adjust the size of the barplot to fit in the colour legend.

character string, the title of the plot.

further arguments passed to barplot or heatmap.

main,

14 plotCtCor

Details

This function is for generating two different types of plot. If by . feature=FALSE the number
of each featureCategory will be counted for each card, and a barplot is made. If however
by .feature=TRUE, then the categories for each feature across the selected cards will be clus-

tered in a heatmap.

For by . feature=TRUE the plot can be modified extensively using calls to the underlying heatmap
function, such as setting cexRow to adjust the size of row labels.

Value

A figure is produced on the current graphics device.

Author(s)

Heidi Dvinge

See Also

setCategory, and heatmap for the underlying plotting function.

Examples

Load example preprocessed data

data (gPCRpros)

Plot categories for samples

plotCtCategory (gPCRpros)

plotCtCategory (qgPCRpros, cards=1:3, stratify="class")
Categories for features

plotCtCategory (gPCRpros, by.feature=TRUE)

plotCtCor Correlation between Ct values from gPCR data

Description

Function for plotting the correlation based on Ct values between samples containing high-throughput

gqPCR data.
Usage

plotCtCor (g, col, col.range = c(0, 1), main, mar, ...)
Arguments

q object of class qPCRset.

col vector of colours to use, defaults to a spectrum from red to blue/purple.

col.range vector, the range of colours to use.

main character string, plot title.

mar vector, the size of the borrom and right hand side margins.

any other arguments will be passed to the heatmap . 2 function.

plotCtDensity 15

Details

This function may be used to cluster the samples based on Ct values and present the result in a
heatmap. Per default the colours are a rainbow scale from O to 1.

A standard heatmap is drawn, but this can be modified extensively using the arguments available in
the heatmap . 2 function.

Value

A plot is created on the current graphics device.

Author(s)
Heidi Dvinge

See Also

heatmap.2

Examples

data (gPCRraw)
plotCtCor (gPCRraw)
plotCtCor (gPCRraw, col.range=c(0.5,0.8))

plotCtDensity Distribution plot for gPCR Ct values.

Description

Function for plotting the density distribution of Ct values from high-throughput qPCR data.

Usage
plotCtDensity (g, cards = TRUE, xlab = "Ct", ylab = "Density", col, main = NULL,
Arguments
q object of class qPCRset.
cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.
xlab character string, label for the x-axis.
ylab character string, label for the y-axis.
col vector of colours to use, defaults to different colour for each card.
main character string, plot title.
legend logical, whether to include a colour legend or not.
lwd numeric, the width of the lines.
any other arguments will be passed to the matplot function.
Details

The distribution of Ct values in the qPCRset g is calculated using density.

16 plotCtHeatmap

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

matplot,density

Examples

Loading the data

data (gPCRraw)

Make plot with all samples or Jjust a few
plotCtDensity (qPCRraw)

plotCtDensity (gPCRraw, cards=c(1l,4))

plotCtHeatmap Heatmap of gPCR Ct values.

Description

Function for drawing a heatmap of Ct values from high-throughput qPCR experiments such as using
TagMan Low Density Arrays.

Usage

plotCtHeatmap (g, main = NULL, col, col.range, dist = "pearson", zero.center, mar
Arguments

q object of class qPCRset.

main character string, plot title.

col the colours to use. See details.

col.range vector, the range of colours to use.

dist character string, specifying whether to use "pearson” correlation (default) or

"euclidean" distance for the clustering.
zero.center logical, should the colours be shifted to be zero-centered. See details.
mar vector, the size of the borrom and right hand side margins.
gene.names character vector, names to replace the genes (rows) with. See details.
sample.names character vector, names to replace the samples (columns) with. See details.

any other arguments will be passed to the heatmap . 2 function.

plotCtHistogram 17

Details

This function may be used to cluster the raw or normalized Ct values, and present the result in a
heatmap.

The color range is used to represent the range of values for the statistic. If col==NULL the colour
will be set to a spectrum from red to blue/purple, unless there are negative values in which case it
goes red-yellow-green to reflect up and down regulation of genes. If zero.center=NULL then
zero.center will automatically be set to TRUE to make the colour scale symmetric around 0.

Especially gene names will often not be readable in a standard size plotting device, and might
therefore be removed. If gene.names or sample.names is set to a single character (such as ""
for no naming), then this character will be repeated for all rows or columns.

A standard heatmap is drawn, but this can be modified extensively using the arguments available in
the heatmap . 2 function.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

heatmap.2

Examples

Load example data

data (gPCRraw)

Some standard heatmaps
plotCtHeatmap (QPCRraw, gene.names="")

plotCtHeatmap (gPCRraw, gene.names="", dist="euclidean", col.range=c(10,35))
plotCtHeatmap (QPCRraw, gene.names="", dist="euclidean", col=colorRampPalette (rev (brewer.r
plotCtHistogram Histrogram of Ct values from qPCR experiments.
Description

The distribution of Ct values for a selected qPCR sample is shown in a histogram.

Usage

plotCtHistogram(g, card = 1, xlab = "Ct", col, main, n = 30, ...)

18 plotCtOverview

Arguments
q an object of class qPCRset.
card integer, the number of the card (sample) to plot.
xlab character string, the label for the x-axis.
col integer or character, the colour for the histogram.
main character string, the plot title. Default is the name of the sample.
n integer, number of bins to divide the Ct values into.
any other arguments are passed to hist.
Value

A figure is generated in the current graphics device.

Author(s)

Heidi Dvinge

See Also

plotCtDensity or plotCtBoxes for including multiple samples in the same plot.

Examples

Load example data

data (gPCRraw)

Create the plots

plotCtHistogram (gqPCRraw, card=2)

plotCtHistogram (gqPCRraw, card=3, n=50, col="blue")

plotCtOverview Overview plot of gPCR Ct values across multiple conditions.

Description

Function for high-throughput qPCR data, for showing the average Ct values for features in a barplot,
either for individual samples or averaged across biological or technical groups. If Ct values are
shown, error bars can be included, or the Ct values can be displayed relative to a calibrator sample.

Usage

plotCtOverview (q, cards = TRUE, genes, groups, calibrator, replicates = TRUE,

plotCtOverview 19

Arguments
q object of class qPCRset.
cards integer, the cards (samples) to use. Defaults to all.
genes vector selecting the features to show. See Details.
groups vector with groups to average the samples across. If missing all the samples are

displayed individually.
calibrator the value in groups to use as calibrator sample. See Details.

replicates logical, if should values from replicated features in each sample be collapsed or
kept separate.

col colours to use for each sample or group.
conf.int logical, should the 95 percent confidence interval be shown. See Details.
legend logical, should a legend be included in the plot.

further arguments passed to barplot.

Details

If a calibrator is chosen all values will be displayed relative to this, i.e. as Ct(sample)-Ct(calibrator).
If there is no calibrator, the full Ct values are shown, including 95% confidence interval if se-
lected. For confidence intervals when there is a calibrator, it’s the variation across Ct(sample)-
average(Ct(calibrator)) that is shown.

When setting replicates=TRUE it is often better to specify genes by name rather than select-
ing for example the first 10 features using 1:10. This literally only takes the first 10 rows of the
data, although some of these features might be replicated elsewhere in the data.

Value

A figure is produced in the current graphics device.

Author(s)

Heidi Dvinge

Examples

Load example data

data (gPCRraw)

exPath <- system.file ("exData", package="HTgPCR")

samples <- read.delim(file.path(exPath, "files.txt"))

Show all samples for the first 10 genes

g <- featureNames (gPCRraw) [1:10]

plotCtOverview (QPCRraw, genes=g, xlim=c (0, 90))

plotCtOverview (QPCRraw, genes=g, xlim=c(0,50), groups=samplesS$Treatment)

plotCtOverview (QPCRraw, genes=g, xlim=c(0,60), groups=samplesS$Treatment, conf.int=TRUE, y
Relative to a calibrator sample

plotCtOverview (gQPCRraw, genes=g, groups=samplesS$Treatment, calibrator="Control")
plotCtOverview (QPCRraw, genes=g, groups=samples$Treatment, calibrator="Control", conf.int
plotCtOverview (QPCRraw, genes=g, groups=samplesS$Treatment, calibrator="LongStarve")

20 plotCtPairs

plotCtPairs Fairwise scatterplot of multiple sets of Ct values from qPCR data.

Description

Produces a plot of high-throughput qPCR Ct values from N number of samples plotted pairwise

against each other in an N by N plot. The Ct values will be in the upper triangle, and the correlation

between samples in the lower. Features can be marked based on for example feature class or type.
Usage

plotCtPairs (g, cards = TRUE, lower.panel = panel.Ct.cor, upper.panel = panel.Ct.

Arguments
q object of class gPCRset.
cards vector, the cards to plot against each other.

lower.panel function, to use for plotting the lower triangle.

upper.panel function, to use for plotting the upper triangle.

Ct.max numeric, Ct values above this limit will be excluded when calculating the corre-
lation.
col vector with the colour(s) to use for the points, or a character string ("type" or

"class") indicating whether points should be coloured according to featureType
or featureClass of g.

pch integer or single character, which plotting symbol to use for the points.
cex.cor numeric, the expansion factor for the text in panel.Ct.cor.
cex.pch numeric, the expansion factor for the points in panel.Ct.scatter.
diag logical, should the diagonal line y=x be plotted.

any other arguments are passed to the panel functon or pairs.

Value

A figure is generated in the current graphics device.

Author(s)
Heidi Dvinge

See Also

pairs orplotCtScatter for plotting just two samples.

Examples

Load example data

data (gPCRraw)

Various types of plot
plotCtPairs (gPCRraw, cards=1:4)
plotCtPairs (gPCRraw, col="black")
plotCtPairs (qPCRraw, Ct.max=40)

plotCtPCA 21

plotCtPCA PCA for gPCR Ct values.

Description

Perform and plot a principal component analysis for high-throughput qPCR data from any platform,
for doing clustering.

Usage

plotCtPCA (g, s.names, g.names)

Arguments
q a matrix or an object of class gPCRset containing Ct values.
S.names character vector, names of samples. See details.
g.names character vector, names of genes. See details.

Details

Per default the sample names from the qPCRset are used, howeer the gene names are replaced by
"*" to avoid cluttering the plot.

Value

A plot is created on the current graphics device.

Note

This is still a work in progress, and the function is not particularly sophisticated.

Author(s)

Heidi Dvinge

See Also

prcomp

Examples

Load example data
data (gPCRraw)

Plot

plotCtPCA (qPCRraw)

22 plotCtReps

plotCtReps Scatter plot of features analysed twice during each gPCR experiment.

Description

In high-throughput qPCR data some features may be present twice on each card (sample). This
function will make a scatter plot of one replicate versus the other for each sample individually, as
well as mark genes with very deviating replicate values.

Usage

plotCtReps (g, card = 1, percent = 20, verbose = TRUE, col = 1,

Arguments
q object of class qPCRset.
card integer, the sample number to plot.
percent numeric, features with replicate values differ more than this percentage from
their average will be marked on the plot.
verbose logical, should the deviating genes and their Ct values be printed to the terminal.
col integer or character; the colour of the points in the scatter plot.
any other arguments are passed to plot.
Details

This function will look through the data in the gPCRset, find all genes with are presented twice on
the array, and plot the Ct values of these replicated genes against each other. Whether a genes goes
to the x or y-axis depends on the first occurrence of the gene names.

All genes where abs(repl-rep2) > percent/100*replicate mean will be marked by an open circle,
and the gene names written in red letters.

Value

An plot is created on the current graphics device. Also, a data.frame with the names and values of
deviating genes is returned invisibly.

Author(s)

Heidi Dvinge

See Also

plot, and par for the plotting parameters.

plotCtRQ 23

Examples

Load example data
data (gPCRraw)

Plot replicates
plotCtReps (gPCRraw,
plotCtReps (gPCRraw,

card=1,
card=2,

percent=30)
percent=10)

reps <- plotCtReps (gPCRraw, card=2, percent=20)
reps
plotCtRQ Plot the relative quantification of Ct values from gPCR experiments.
Description

Function for plotting the relative quantification (RQ) between two groups of data, whose Ct valuse
have been tested for significant differential expression.

Usage

plotCtRQ (gDE, comparison = 1, genes, transform = "log2",

p.val = 0.

Arguments

gqDE list or data.frame, the result from ttestCtData or limmaCtData.

comparison integer or character string, indicating which component to use if gDE is a list.

genes numeric or character vector, selected genes to make the plot for.

transform character string, how should the data be displayed. Options are "none", "log2"
or "logl0". See details

p.val numeric between 0 and 1, if genes is not supplied all given with (adjusted)
p-value below this threshold will be included.

mark.sig logical, should significant features be marked.

p.sig numeric, the cut-off for significant p-values that will be marked by *.

p.very.sig numeric, the cut-off for very significant p-values that will be marked by ".

mark.un logical, should data with unreliable target or calibrator samples be marked. See
details.

un.tar colour to use for the undetermined targets. See details.

un.cal colour to use for the undetermined calibrators. See details.

col vector, colours to use for the bars.

legend logical, should a legend be included in the barplot.

xlim vector of length 2, the limits on the x-axis. Mainly used for moving the legend
to the left of bars.

mar vector with 4 values, the size of the margins. See par for more info.

main character string, the image title. Default to the name of the chosen comparison.

any other arguments will be passed to the barplot function.

1,

mark.sig

24

Details

plotCtScatter

The relative quantification is calculated as RQ=2"-ddCT, where ddCT is the deltadeltaCt value.

If mark.un=TRUE, those bars where either the calibrator or target sample measurements were
undetermined are marked using diagonal lines. Whether either of these are called undetermined (in-
cludes unreliable values) or not depends on all the input Ct valuesin t testCtDataor limmaCtData,
and whether st ringent=TRUE was used in these functions.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

ttestCtData and limmaCtData for testing the Ct data for differential expression.

Examples

Load example data and calculate differential expression

data (gPCRpros)
gDE <- ttestCtData (qPCRpros|,1:4], groups=factor(c("a", "B", "B", "A")), calibrator="B")

Plotting the top 10 results or first 10 genes

plotCtRQ (gDE,
plotCtRQ (gDE,

genes=1:10)
genes=featureNames (qPCRpros) [1:10])

Plot all results with p-value below 0.08

plotCtRQ (gDE,
plotCtRQ (gDE,

p.val=0.08, transform="none")
p.val=0.08, transform="loglO")

plotCtScatter

Scatterplot of two sets of Ct values from gPCR data.

Description

Produces a plot of Ct values from two samples plotted against each other. Features can be marked
based on for example feature class or type.

Usage

plotCtScatter(q, cards = c(l, 2), col = "class", pch = 20, diag = FALSE,
Arguments

q object of class qPCRset.

cards vector, the two cards to plot against each other.

col vector with the colour(s) to use for the points, or a character string ("type" or

"class") indicating whether points should be coloured according to featureType
or featureClass of g.

cor

T

plotCtSignificance
pch
diag
cor

Ct.max

legend

Value

25

integer, the point type to use for the plot.
logical, should the diagonal line y=x be plotted.

logical, should information about the correlation between the two samples be in-
cluded in the plot. The correlation is calculated both with and without removing
Ct values above Ct.max.

numeric, all Ct values above this will be removed for calculating one of the
correlations.

logical, if col is either "type" or "class", should a colour legend for these be
included.

any other arguments are passed to plot.

A figure is generated in the current graphics device.

Author(s)

Heidi Dvinge

Examples

Load example data

data (gPCRraw)

Various types of plot

plotCtScatter (gPCRraw, cards=c(1l,2))

plotCtScatter (qgPCRraw, cards=c(l,4), col="type")

plotCtScatter (gPCRraw, cards=c(l,4), col="black", cor=FALSE, diag=TRUE)

plotCtSignificance Barplot with Ct values between genes from gPCR.

Description

Function for producing a barplot of the Ct values from high-throughput gPCR samples. A com-
parison is made between two groups which have been tested for differential expression, and all
individual Ct values are shown, to identify potential outliers.

Usage

plotCtSignificance (gDE, ¢, comparison = 1, genes, p.val = 0.1, groups,
Arguments

qDE list or data.frame, the result from ttestCtData or limmaCtData.

q the qPCRset data that was used for testing for differential expression.

comparison integer or character string, indicating which component to use if x is a list.

genes numeric or character vector, selected genes to make the plot for.

p.val numeric between 0 and 1, if genes is not supplied all given with (adjusted)

p-value below this threshold will be included.

calibratc

26

groups
calibrator
target
p.sig
p.very.sig
mark.sig
col

un.col

point.col
legend
mar

main

jitter

Details

plotCtSignificance

vector, the groups of all the samples in g.

character string, which of the groups is the calibrator.

character string, which of the groups is the target.

numeric, the cut-off for significant p-values that will be marked by *.
numeric, the cut-off for very significant p-values that will be marked by ".
logical, should significant features be marked.

vector, colours to use for the two sets of bars, one per sample type.

integer or character string, the colour to use for all Ct values that are "Unreliable"
or "Undetermined".

integer or character string, the colour to use for all other Ct values.

logical, should a legend be included int eh barplot.

vector with 4 values, the size of the margins. See par for more info.

character string, the image title. Default to the name of the chosen comparison.

numeric, between 0 and 1. If Ct values are very similar, the individual points
might lie on top of each other in the bars. This adds a jittering factor along the
x-axis. If O the points will all be aligned.

any other arguments will be passed to the barplot function.

This function will make a barplot with the average Ct values for the test and reference samples
for the selected genes. All the individual Ct values are plotted on top of the bars though, and the
"Unreliable" or "Undetermined" ones are marked, to do a visual assesment of the impact of non-
valid measurements on the average.

It’s up to the user to specify the correct calibrator and target for the given comparison; no

checking is done.

Value

A plot is created on the current graphics device.

Author(s)

Heidi Dvinge

See Also

barplot and plotCtRQ or plotCtOverview for a plot of the relative quantification between

samples.

Examples

Load example data and calculate differential expression

data (gPCRpros)
grp <- factor(c("A",
gDE <- ttestCtData (qPCRpros[,1:4],

Plot

plotCtSignificance (gDE,
plotCtSignificance (gDE,
plotCtSignificance (gqDE,

"B", "B", "A"))

groups=grp, calibrator="B")

calibrator="B",
calibrator="B",
calibrator="B",

g=gPCRpros,
g=gPCRpros,
g=gPCRpros,

target="A",
target="A",
target="A",

groups=grp,
groups=grp,
groups=grp,

genes=1:10,

genes=feature

p.val=0.001,

plotCVBoxes 27

plotCVBoxes Boxplots of CV for gPCR Ct values.

Description

Function that will calculate the coefficients of variation across selected qPCR data, and plot the
results in a boxplot.

Usage
plotCVBoxes (g, cards = TRUE, xlab = "", ylab = "CV", col = brewer.pal (5,
Arguments
g object of class qPCRset.
cards vector, the numbers of the cards to plot. Defaults to TRUE = all cards.
xlab character string, label for the x-axis.
ylab character string, label for the y-axis.
col vector of colours to use.
main character string, plot title.
stratify character, specifying what to stratify the Ct values by. NULL, the default means
no stratification, "type" is the feature types of the qPCRset, and "class" the fea-
ture class.
any other arguments will be passed to the boxplot function.
Details

The CV is calculated across all the selected cards based on each well position, without taking
possibly replicated genes on the cards into consideration. "type" and "class" are automaticalle
extracted from the qPCRset using featureType and featureClass.

Value

A plot is created on the current graphics device. The CV valus are returned invisibly.

Author(s)

Heidi Dvinge

See Also

boxplot

"Spectr

28 plotCtLines

Examples

Load example data

data (gPCRraw)

Make plot with all samples or just a few
plotCVBoxes (gPCRraw)

plotCVBoxes (gPCRraw, cards=c(1l,4))
plotCVBoxes (gPCRraw, stratify="class")

x <- plotCVBoxes (qPCRraw, stratify="type")
x[1:10]

plotCtLines Plotting Ct values from gPCR across multiple samples.

Description

This function is for displaying a set of features from a qPCRset across multiple samples, such as
a timeseries or different treatments. Values for each feature are connected by lines, and the can be
averaged across groups rather than shown for individual smaples.

Usage
plotCtLines (g, genes, groups, col = brewer.pal (10, "Spectral"), xlab = "Sample",
Arguments
q object of class qPCRset.
genes numeric or character vector, selected genes to make the plot for.
groups vector, the different groups that the samples in g belong to. See details.
col vector, colours to use for the lines.
xlab character string, label for the x-axis.
ylab character string, label for the y-axis.
legend logical, whether to include a colour legend or not.
1wd numeric, the width of the lines.
1ty vector, line types to use. See par or 1ines for details.
pch vector, if groups is set, the point types that will be used for each feature in
genes.
xlim vector of length two, the limits for the x-axis. Mainly used for adjusting the
position of the legend.
any other arguments will be passed to the matplot function.
Details

The default plot shows the Ct values across all samples in g, with lines connecting the samples.
However, if groups is set the Ct values will be averaged within groups. Lines connect these
averages, but the individual values are shown with different point types, as chosen in pch.

Value

A plot is created on the current graphics device.

gPCRpros 29

Author(s)
Heidi Dvinge

See Also

matplot

Examples

Load some example data

data (gPCRraw)

samples <- exFiles <- read.delim(file.path(system.file ("exData", package="HTgPCR"), "file
Draw dfferent plots

plotCtLines (gPCRraw, genes=1:10)

plotCtLines (gPCRraw, genes=1:10, groups=samplesS$Treatment, xlim=c (0, 3))

plotCtLines (gPCRraw, genes=1:10, col=as.numeric (featureType (qPCRraw) [1:10]))

gPCRpros Example processed gPCR data

Description

Processed version of the raw data in qPCRraw, to be used as example data in the HTqPCR pack-
age. The data has been processed with setCategory to mark the feature categories, and with
normalizaHTgPCRCard using rank invariant normalisation.

Usage

data (gPCRpros)

Format

The format is: Formal class ’qPCRset’ [package ".GlobalEnv"] with 9 slots ..@ featureNames

1 chr [1:384] "Genel" "Gene2" "Gene3" "Gene4"@ sampleNames : chr [1:6] "samplel”
"sample2" "sample3" "sample4" @ exprs : num [1:384, 1:6] 11.5 33.9 28 26.9 25-
attr(*, "dimnames")=List of 2$: chr [1:384] "Genel" "Gene2" "Gene3" "Gened"
.$: chr [1:6] "samplel"” "sample2" "sample3" "sampled" @ flag :’data.frame’: 384 obs. of
6 variables:$ V1: chr [1:384] "Passed" "Passed" "Passed" "Passed"$ V2: chr [1:384]
"Passed" "Passed" "Passed" "Passed"$ V3: chr [1:384] "Passed" "Passed" "Passed" "Passed"
v .. .8 V4: chr [1:384] "Flagged" "Flagged" "Passed" "Passed"$ V5: chr [1:384] "Passed"
"Passed" "Passed" "Passed"$ V6: chr [1:384] "Passed" "Passed" "Passed" "Passed" @

featureType : Factor w/ 2 levels "Endogenous Control",..: 1222222222@ featurePos :
chr [1:384] "A1" "A2" "A3" "A4" @ featureClass : Factor w/ 3 levels "Kinase","Marker",..: 3
321231333..... @ featureCategory:’data.frame’: 384 obs. of 6 variables:$ X1: chr [1:384]

"Unreliable" "OK" "OK" "OK"$ X2: chr [1:384] "Unreliable" "Undetermined" "OK" "OK"
v .. .$ X3: chr [1:384] "Unreliable" "OK" "OK" "OK"$ X4: chr [1:384] "OK" "OK" "OK"
"OK"$ X5: chr [1:384] "Unreliable" "Undetermined" "OK" "OK"$ X6: chr [1:384]

"OK" "OK" "OK" "OK" @ normalized : chr "rankinvariant”

Examples

data (gPCRpros)

30

qPCRset-class

gPCRraw Example raw qPCR data.

Description

Six qPCR samples, performed on the TagMan Low Density Arrays from Applied Biosystem. Each
sample contains 384 PCR reactions, and there are 3 different samples with 2 replicates each. To be
used as example data in the HTqPCR package.

Usage

data (gPCRraw)

Format

An object of class gPCRset. The format is: Formal class ’qPCRset’ [package ".GlobalEnv"] with 9
slots ..@ featureNames : chr [1:384] "Genel" "Gene2" "Gene3" "Gene4" @ sampleNames : chr
[1:6] "samplel" "sample2" "sample3" "sample4" @ exprs : num [1:384, 1:6] 11.5 33.9 28 26.9
25- attr(*, "dimnames")=List of 2$: chr [1:384] "Genel" "Gene2" "Gene3" "Gene4"
we we oo .$ 2 chr [1:6] "samplel” "sample2" "sample3" "sampled" @ flag :’data.frame’: 384 obs.
of 6 variables:$ V1: chr [1:384] "Passed" "Passed" "Passed" "Passed"$ V2: chr [1:384]
"Passed" "Passed" "Passed" "Passed"$ V3: chr [1:384] "Passed" "Passed" "Passed" "Passed"
e .. .8 V4: chr [1:384] "Flagged" "Flagged" "Passed" "Passed"$ V5: chr [1:384] "Passed"
"Passed" "Passed" "Passed"$ V6: chr [1:384] "Passed" "Passed" "Passed" "Passed" @
featureType : Factor w/ 2 levels "Endogenous Control",..: 1222222222@ featurePos :
chr [1:384] "A1" "A2" "A3" "A4" @ featureClass : Factor w/ 3 levels "Kinase","Marker",..: 3
321231333..... @ featureCategory:’data.frame’: 384 obs. of 6 variables:$ X1: chr [1:384]

"OK" "OK" "OK" "OK"$ X2: chr [1:384] "OK" "OK" "OK" "OK"$ X3: chr [1:384]
"OK" "OK" "OK" "OK"$ X4: chr [1:384] "OK" "OK" "OK" "OK"$ X5: chr [1:384]
"OK" "OK" "OK" "OK"$ X6: chr [1:384] "OK" "OK" "OK" "OK" @ normalized : chr
"none"

Examples

data (gPCRraw)

gPCRset-class Class "qPCRset"

Description

This is a class for containing the raw or normalized data, such as Ct values and some related quality
information, from TagMan Low Density Arrays or any other type of (high-throughput) qPCR data.
It is similar to eSet for microarray data.

Objects from the Class

Objects can be created by calls of the form new ("gPCRset", ...) orusing readCtData.

gPCRset-class 31

Slots
featureNames: Object of class "character" giving the names of the features, such as genes
or miRNAs, in the samples.
sampleNames: Object of class "character" containing the sample names.
exprs: Object of class "matrix" containing the Ct values.

flag: Object of class "data.frame" containing the flag for each Ct value, as supplied by the
input files.

featureType: Object of class "factor" representing the different types of features on the
card, such as controls and target genes.

featurePos: Object of class "character" representing the location "well" of a gene on the
card. If data does not come from a card format, the positions will be given consecutive names.

featureClass: Object of class "factor" with some meta-data about the genes, for example
if it is a marker, transcription factor or similar.

featureCategory: Object of class "data.frame" representing the quality of the measure-
ment for each Ct value, such as "OK", or "Unreliable" if the Ct value is considered too migh.

normalized: Object of class "character" indicating if the data has been normalized, and if
so then what method was used.

Methods

[signature (x = "gPCRset"): Subsets by genes or samples.

exprs signature (object = "gPCRset"): Extracts the Ct matrix.

exprs<- signature (object = "gPCRset", value = "matrix"): Replaces the Ct
matrix.

featureNames signature (object = "gPCRset"): Extracts the features (gene names) on
the card.

featureNames<- signature (object = "gPCRset", value = "character"): Re-

places the features (gene names) on the card.

sampleNames signature (object = "gPCRset"): Extracts the sample names.

sampleNames<- signature (object = "gPCRset", value = "character"): Re-
places the sample names.

featureType signature (object = "gPCRset"): Extracts the feature type for each gene.

featureType<- signature (object = "gPCRset", value = "factor"): Replacesthe
feature type for each gene.

featurePos signature (object = "gPCRset"): Extracts the position of each feature (gene)
on the card.

featurePos<- signature (object = "gPCRset", value = "character"): Replaces
the position of each feature (gene) on the card.

featureClass signature (object = "gPCRset"): Extracts the feature class for each gene.

featureClass<- signature (object = "gPCRset", value = "factor"): Replacesthe
feature class for each gene.

featureCategory signature (object = "gPCRset"): Extracts the category of each Ct
value.

featureCategory<- signature (object = "gPCRset", value = "data.frame"):Re-

places the category of each Ct value.

32 readCtData
n.wells signature (object = "gPCRset"): Extracts information about the number of wells
on the card.
n.samples signature (object = "gPCRset"): Extracts information about the number of
samples in the set.
normalized signature (object = "gPCRset"): Extracts information about normaliza-
tion.
normalized signature (object = "gPCRset"): Extracts information about normaliza-
tion.
show signature (object = "gPCRset"): Displays som abbreviated information about
the data object.
summary signature (object = "gPCRset"): Displays a summary of the Ct values from
each sample.
Author(s)
Heidi Dvinge
Examples

data (gPCRraw)
show (gPCRraw)
showClass ("gPCRset")
str (gPCRraw)

readCtData Reading Ct values from qPCR experiments data into a gPCRset

Description

This function will read tab separated text files with Ct values and feature meta-data from high-
throughput qPCR experiments into a qPCRset containing all the relevant information.

Usage

readCtData(files, path = NULL, n.features = 384, flag = 4, feature = 6, type

Arguments
files character vector witht he names of the files to be read.
path character string with the path to the folder containing the data files.

n.features integer, number of features present in each file.

flag integer indicating the number of column containing information about the flags.
See Details.

feature integer indicating the number of column containing information about the indi-
vidual features (typically gene names).

type integer indicating the number of column containing information about the type
of each feature. See Details.

position integer indicating the number of column containing information about the posi-
tion of features on the card. See Details.

7

readCtData 33

Ct integer indicating the number of column containing information about the Ct
values.

header logical, does the file contain a header row or not.

SDS logical, is the data in the output format from Sequence Detection Systems (SDS)
Software. See Details.

samples character vector with names for each sample. Per default the file names are used.

na.value integer, a Ct value that will be assigned to all undetermined/NA wells.

any other arguments are passed to read.table.

Details

This is the main data input function for the HTqPCR package for analysing qPCR data. It extracts
the threshold cycle, Ct value, of each well on the card, as well as information about the quality
(e.g.~passed/failed) of the wells. The function is tuned for data from TagMan Low Density Array
cards, but can be used for any kind of qPCR data.

featureNames, featureType and featurePos will be extracted from the first file. If
flag, type or position er set to NULL, this means that this information is not available in
the file. £1ag will then be set to "Passed", t ype to "Target" and position to "featurel", "fea-
ture2", ... etc until the end of the file. Especially position might not be available in case the data
does not come from a card format, but it is required in subsequent functions in order to disambiguate
between features in case some features are present multiple times.

If the data was analysed using SDS Software it may contain a variable length header specifying
parameters for files that were analysed at the same time. If SDS=TRUE then readCtData will
scan through the first 100 lines of each file, and skip all lines until (and including) the line beginning
with "#", which is the header. The end of the file might also contain some plate ID information, but
only the number of lines specified in n. features will be read.

Value

A "gPCRset " object.

Warnings
The files are all assumed to belong to the same design, i.e.~have the same features (genes) in them
and in identical order.

Author(s)

Heidi Dvinge

See Also

read.delim for further information about reading in data, and "gPCRset" for a definition of
the resulting object.

Examples

Locate example data and create gPCRset object

exPath <- system.file("exData", package="HTgPCR")

exFiles <- read.delim(file.path(exPath, "files.txt"))

raw <- readCtData(files=exFiles$File, path=exPath)

Example of adding missing information (random data in this case)
featureClass (raw) <- factor(rep(c("A", "B", "C"), each=384/3))

34 setCategory

setCategory Assign categories to Ct values from gPCR data.

Description
Data in qPCRset objects will have feature categories ("Unreliable", "Undtermined") assigned to
them based on different Ct criteria.

Usage

setCategory (g, Ct.max = 35, Ct.min = 10, replicates = TRUE, quantile = 0.9, grot

Arguments
g qPCRset object.
Ct .max numeric, the maximum tolerated Ct value. Everything above this will be "Un-
determined".
Ct.min numeric, the minimum tolerated Ct value. Everything below this will be "Unre-
liable".

replicates logical, should Ct values from genes replicated within each sample be collapsed
for the standard deviation.

quantile numeric from 0 to 1, the quantile interval accepted for standard deviations.
NULL means that variation between replicates is not used for setting the cat-
egories. See details.

groups vector, grouping of cards, for example biological or technical replicates

flag logical, should categories also be set to "Unreliable" according to the content of
flag(q).

flag.out character vector, if £1ag=TRUE, what are the flag(s) to be set as "Unreliable".

verbose logical, should a summary about category counts per sample be printed to the
prompt.

plot logical, should some plots of the standard deviations be created.

any other arguments are passed to plot.

Details

Categories can be assigned to the featureCategory of the qPCRset using either just simple
criteria (max/min of Ct values or £1ag of q) or by looking at the standard deviation of Ct values
across biological and technical replicates for each gene.

When looking at replicates, the standard deviation and mean are calculated and a normal distribution
following these parameters is generated. Individual Ct values that are outside the interval set by
quantile are set as "Unreliable". So if e.g. quantile=90 the values outside the top 5% and
lower 5% of the normal distribution with the given mean and standard deviation are removed.

"Undetermined" has priority over "Unreliable", so if a value is outside quantile but also above
Ct .max it will be "Undetermined".

NB: When setting categories based on replicates, the Ct values are assumed to follow a normal
distribution. This might not be the case if the number of samples within each group is small, and
there are no replicates on the genes within each sample.

If the number of replicates vary significantly between biological groups, this will influence the
thresholds used for determining the range of "OK" Ct values.

ttestCtData 35

Value

If plot=TRUE one figure per sample grous is returned to the current graphics device. A qPCRset
with the new feature categories is returned invisibly.

Note

It’s adviced to try several different values for quant ile, depending on the input data set. Using the
functionPlotCtCategory (..., by.feature=FALSE) orplotCtCategory (..., by.feature=TRUE
might help assess the result of different quantile choices.

Author(s)

Heidi Dvinge

See Also

filterCategory,plotCtCategory

Examples

Load example data

data (gPCRraw)

exFiles <- read.delim(file.path(system.file("exData", package="HTgPCR"), "files.txt"))
Set categories in various ways

setCategory (gPCRraw, flag=FALSE, quantile=NULL)

setCategory (qPCRraw(,1:4], groups=exFiles$Treatment[1:4], plot=TRUE)

setCategory (qPCRraw([,1:4], groups=exFiles$Treatment[1l:4], plot=TRUE, quantile=0.80)

x <- setCategory (gPCRraw, groups=exFiles$Treatment, verbose=FALSE, quantile=0.80)

Plot the categories

plotCtCategory (x)

ttestCtData Differentially expressed features with gPCR: t-test

Description

Function for calculating t-test and p-values across two groups for the features present in high-
throughput qPCR data, such as from TagMan Low Density Arrays.

Usage

ttestCtData (g, groups = NULL, calibrator, alternative = "two.sided", paired = FZ2
Arguments

q gPCRset object.

groups factor, assigning each sample to one of two groups.

calibrator which of the two groups is to be considered as the reference and not the test?
Defaults to the first group in groups.

alternative character string (first letter is enough), specifying the alternative hypothesis,
"two.sided" (default), "greater" or "less".

36

ttestCtData

paired logical, should a paired t-test be used.

replicates logical, if replicated genes are present on the array, the statistics will be calcu-
lated for all the replicates combined, rather than the individual wells.

sort boolean, should the output be sorted by p-values.
stringent boolean, for flagging results as "Undetermined". See details.

any other arguments will be passed to the t . test function.

Details

Once the Ct values have been normalised, differential expression can be calculated. This func-
tion deals with just the simple case, where there are two types of samples to compare. For more
complicated studies, see 1 immaCtData.

All results are assigned to a category, either "OK" or "Undetermined" depending on the input Ct
values. If st ringent=TRUE any unreliable or undetermined measurements among technical and
biological replicates will result in the final result being "Undetermined". For st ringent=FALSE

the result will be "OK" unless at least half of the Ct values for a given gene are unreliable/undetermined.

Value

A data.frame containing the following information:

genes The names of the features on the card.

feature.pos The featurePos of the genes. If replicated genes are used, the feature posi-
tions will be concatenated together.

t.test The value of the t-test.
p.value The corresponding p-value.
meanCalibrator

The average expression level of each gene in the calibrator sample(s).
meanTarget) The average expression level of each gene in the target sample(s).
categoryCalibrator

The category of the Ct values ("OK", "Undetermine") across the calibrator.
categoryTarget

Ditto for the target.

Author(s)

Heidi Dvinge

See Also

t.test,limmaCtData. plotCtRQand plotCtSignificance can be used for visualising
the results.

Examples

Load example preprocessed data
data (gPCRpros)
Test between two groups, collapsing replicated features

diff.exp <- ttestCtData(gPCRpros|[,1:4], groups=factor(c("aA", "B", "B", "A")),

diff.exp[1:10,]
The same test, taking replicated features individually

diff.exp <- ttestCtData(gPCRpros|[,1:4], groups=factor(c("aA", "B", "B", "A")),

calibrators=

calibrators=

Index

*Topic classes density, I6
gPCRset-class, 30 dist, 2

xTopic datasets
gPCRpros, 29 ebayes, 8§
gPCRraw, 30 eSet, 30

+Topic file exprs, gPCRset-method
readCtData, 32 (gPCRset—-class), 30

+Topic hplot exprs<—,gPCRset,matrix-method
clustercCt,1 (gPCRset—-class), 30

heatmapSig, 5
plotCtBoxes, 11
plotCtCard, 12
plotCtCategory, 13
plotCtCor, 14
plotCtDensity, 15
plotCtHeatmap, 16
plotCtHistogram, 17
plotCtLines, 28
plotCtOverview, 18
plotCtPairs, 20
plotCtPCa,?21
plotCtReps, 22
plotCtRQ, 23

featureCategory (gPCRset—-class),
30
featureCategory<-—
(gPCRset—-class), 30
featureClass (gPCRset-class), 30
featureClass<- (gPCRset—-class), 30
featureNames, gPCRset—method
(gPCRset—-class), 30
featureNames<—-, gPCRset, character-method
(gPCRset—-class), 30
featurePos (gPCRset—-class), 30
featurePos<- (gPCRset-class), 30
featureType (gPCRset—-class), 30
featureType<- (gPCRset-class), 30

plotCtScatter, 24 filterCategory,2, 35
plotCtSignificance, 25 filterCtData,3
plotCVBoxes, 27 flag (gPCRset-class), 30
«Topic htest flag<- (gPCRset-class), 30
filterCategory,?2
filterCtData, 3 hclust, 2
limmaCtData, 7 heatmap, 14
normalizeCtData, 9 heatmap.2,5, 15,17
setCategory, 34 heatmapSig, 5,8
ttestCtData, 35 HTgPCR (HTgPCR-package), 6
xTopic package HTqPCR-package, 6
HTgPCR-package, 6
[, gPCRset—-method (gPCRset—class), identify.hclust,2
30 image, I3
barplot. 26 limmaCtData, 4, 5,7, 24, 36

ImFit, 8
boxplot, 11,27 S

matplot, 16, 29
clusterCt, 1

contrasts.fit, 8 n.samples (gPCRset-class), 30

37

38 INDEX

n.wells (gPCRset-class), 30
normalize.invariantset, 10
normalizeCtData, 9
normalized (gPCRset-class), 30
normalizequantiles, 10

pairs, 20

par, 11,22

plot, 22
plotCtBoxes, 11, I8
plotCtCard, 4, 12
plotCtCategory, 13,35
plotCtCor, 14
plotCtDensity, 10, 15, 18
plotCtHeatmap, 16
plotCtHistogram, 17
plotCtLines, 28
plotCtOverview, 18, 26
plotCtPairs, 20
plotCtPCa,?21
plotCtReps, 22
plotCtRQ, 8, 23, 26, 36
plotCtScatter, 20, 24
plotCtSignificance,§, 25, 36
plotCVBoxes, 27
prcomp, 21

gPCRpros, 29
gPCRraw, 30
gPCRset, 33
gPCRset-class, 30

read.delim, 33
read.table, 33
readCtData, 32
rect.hclust, 2

sampleNames, gPCRset-method
(gPCRset—-class), 30

sampleNames<-, gPCRset, character—-method
(gPCRset—-class), 30

setCategory, 3, 14, 34

show, gPCRset-method
(gPCRset—-class), 30

summary, gPCRset—-method
(gPCRset—-class), 30

t.test, 36
ttestCtData, 5, 24, 35

	clusterCt
	filterCategory
	filterCtData
	heatmapSig
	HTqPCR-package
	limmaCtData
	normalizeCtData
	plotCtBoxes
	plotCtCard
	plotCtCategory
	plotCtCor
	plotCtDensity
	plotCtHeatmap
	plotCtHistogram
	plotCtOverview
	plotCtPairs
	plotCtPCA
	plotCtReps
	plotCtRQ
	plotCtScatter
	plotCtSignificance
	plotCVBoxes
	plotCtLines
	qPCRpros
	qPCRraw
	qPCRset-class
	readCtData
	setCategory
	ttestCtData
	Index

