
BSgenome
April 19, 2010

available.genomes Find available/installed genomes

Description

available.genomes gets the list of BSgenome data packages that are currently available on
the Bioconductor repositories for your version of R/Bioconductor. installed.genomes gets
the list of BSgenome data packages that are already installed on your machine.

Usage

available.genomes(type=getOption("pkgType"))
installed.genomes()

Arguments

type Character string indicating the type of package ("source", "mac.binary"
or "win.binary") to look for.

Details

A BSgenome data package contains the full genome for a given organism. Its name has 4 parts
separated by a dot (e.g. BSgenome.Celegans.UCSC.ce2). The 1st part is always BSgenome,
the 2nd part is the name of the organism (abbreviated), the 3rd part is the name of the organi-
sation who assembled the genome and the 4th part is the release string or number used by this
organisation for this genome. A BSgenome data package contains a single top-level object (a
BSgenome object) named like the second part of the package name (e.g. Celegans in the case
of BSgenome.Celegans.UCSC.ce2) where all the sequences for this genome are stored.

Value

A character vector containing the names of the BSgenome data packages that are currently available
(for available.genomes), or already installed (for installed.genomes).

Author(s)

H. Pages

1

2 bsapply

See Also

BSgenome-class, available.packages

Examples

What genomes are already installed:
installed.genomes()

What genomes are available:
available.genomes()

Make your choice and install with:
source("http://bioconductor.org/biocLite.R")
biocLite("BSgenome.Scerevisiae.UCSC.sacCer1")

Have a coffee ;-)

Load the package and display the index of sequences for this genome:
library(BSgenome.Scerevisiae.UCSC.sacCer1)
Scerevisiae

bsapply bsapply

Description

Apply a function to each chromosome in a genome.

Usage

bsapply(BSParams, ...)

Arguments

BSParams a BSParams object that holds the various parameters needed to configure the
bsapply function

... optional arguments to ’FUN’.

Details

By default the exclude parameter is set to not exclude anything. A popular option will probably be
to set this to "rand" so that random bits of unassigned contigs are filtered out.

Value

If BSParams sets simplify = FALSE, a GenomeData object is returned containing the results
generated using the remaining BSParams specifications. If BSParams sets simplify = TRUE,
an sapply-like simplification is used on the results.

Author(s)

Marc Carlson

bsapply 3

See Also

BSParams-class, BSgenome-class, BSgenome-utils, GenomeData-class

Examples

Load the Worm genome:
library("BSgenome.Celegans.UCSC.ce2")

Count the alphabet frequencies for every chromosome but exclude
mitochrondrial ones:
params <- new("BSParams", X = Celegans, FUN = alphabetFrequency,
exclude = "M")
bsapply(params)

Or we can do this same function with simplify = TRUE:
params <- new("BSParams", X = Celegans, FUN = alphabetFrequency,
exclude = "M", simplify = TRUE)
bsapply(params)

Examples to show how we might look for a string (in this case an
ebox motif) across the whole genome.
Ebox <- DNAStringSet("CACGTG")
pdict0 <- PDict(Ebox)

params <- new("BSParams", X = Celegans, FUN = countPDict, simplify = TRUE)
bsapply(params, pdict = pdict0)

params@FUN <- matchPDict
bsapply(params, pdict = pdict0)

And since its really overkill to use matchPDict to find a single pattern:
params@FUN <- matchPattern
bsapply(params, pattern = "CACGTG")

Examples on how to use the masks
library("BSgenome.Hsapiens.UCSC.hg18")
I can make things verbose if I want to see the chromosomes getting processed.
options(verbose=TRUE)
For the 1st example, lets use default masks
params <- new("BSParams", X = Hsapiens, FUN = alphabetFrequency,
exclude = c(1:8,"M","X","random","hap"), simplify = TRUE)
bsapply(params)

Set up the motifList to filter out all double T's and all double C's
params@motifList <-c("TT","CC")
bsapply(params)

Get rid of the motifList
params@motifList=as.character()

##Enable all standard masks
params@maskList <- c("RM"=TRUE,"TRF"=TRUE)
bsapply(params)

4 BSgenome-class

##Disable all standard masks
params@maskList <- c("AGAPS"=FALSE,"AMB"=FALSE)
bsapply(params)

BSgenome-class BSgenome objects

Description

The BSgenome class is a container for the complete genome sequence of a given organism.

Accessor methods

In the code snippets below, x is a BSgenome object and name is the name of a sequence (character-
string). Note that, because the BSgenome class contains the GenomeDescription class, then
all the accessor methods for GenomeDescription objects can also be used on x.

sourceUrl(x) Return the source URL i.e. the permanent URL to the place where the FASTA
files used to produce the sequences contained in x can be found (and downloaded).

seqnames(x) Return the index of the single sequences contained in x. Each single sequence is
stored in an XString or MaskedXString object and typically comes from a source file
(FASTA) with a single record. The names returned by seqnames(x) usually reflect the
names of those source files but a common prefix or suffix was eventually removed in order to
keep them as short as possible.

seqlengths(x) Return the lengths of the single sequences contained in x.
See ¿length‘ and ¿length‘ for the definition of the length of an XString or MaskedXString
object. Note that the length of a masked sequence (MaskedXString-class object) is not
affected by the current set of active masks but the nchar method for MaskedXString-
class is.
names(seqlengths(x)) is guaranteed to be identical to seqnames(x).

mseqnames(x) Return the index of the multiple sequences contained in x. Each multiple se-
quence is stored in an XStringSet-class object and typically comes from a source file
(FASTA) with multiple records. The names returned by mseqnames(x) usually reflect the
names of those source files but a common prefix or suffix was eventually removed in order to
keep them as short as possible.

names(x) Return the index of all sequences contained in x. This is the same as c(seqnames(x),
mseqnames(x)).

length(x) Return the length of x, i.e., the number of all sequences that it contains. This is the
same as length(names(x)).

x[[name]] Return sequence (single or multiple) named name. No sequence is actually loaded
into memory until this is explicitely requested with a call to x[[name]] or x$name. When
loaded, a sequence is kept in a cache. It will be automatically removed from the cache at
garbage collection if it’s not in use anymore i.e. if there are no reference to it (other than
the reference stored in the cache). With options(verbose=TRUE), a message is printed
each time a sequence is removed from the cache.

x$name Same as x[[name]] but name is not evaluated and therefore must be a literal character
string or a name (possibly backtick quoted).

BSgenome-class 5

masknames(x) The names of the built-in masks that are defined for all the single sequences.
There can be up to 4 built-in masks per sequence. These will always be (in this order): (1) the
mask of assembly gaps, aka "the AGAPS mask";
(2) the mask of intra-contig ambiguities, aka "the AMB mask";
(3) the mask of repeat regions that were determined by the RepeatMasker software, aka "the
RM mask";
(4) the mask of repeat regions that were determined by the Tandem Repeats Finder software
(where only repeats with period less than or equal to 12 were kept), aka "the TRF mask".
All the single sequences in a given package are guaranteed to have the same collection of
built-in masks (same number of masks and in the same order).
masknames(x) gives the names of the masks in this collection. Therefore the value returned
by masknames(x) is a character vector made of the first N elements of c("AGAPS",
"AMB", "RM", "TRF"), where N depends only on the BSgenome data package being
looked at (0 <= N <= 4). The man page for most BSgenome data packages should provide the
exact list and permanent URLs of the source data files that were used to extract the built-in
masks. For example, if you’ve installed the BSgenome.Hsapiens.UCSC.hg18 package, load it
and see the Note section in ¿BSgenome.Hsapiens.UCSC.hg18‘.

Author(s)

H. Pages

See Also

available.genomes, GenomeDescription-class, BSgenome-utils, XString-class,
MaskedXString-class, XStringSet-class, injectSNPs, subseq,DataTable, subseq,Sequence,
getSeq, matchPattern, rm, gc

Examples

Loading a BSgenome data package doesn't load its sequences
into memory:
library(BSgenome.Celegans.UCSC.ce2)

Number of sequences in this genome:
length(Celegans)

Display a summary of the sequences:
Celegans

Index of single sequences:
seqnames(Celegans)

Lengths (i.e. number of nucleotides) of the sequences:
seqlengths(Celegans)

Load chromosome I from disk to memory (hence takes some time)
and keep a reference to it:
chrI <- Celegans[["chrI"]] # equivalent to Celegans$chrI

chrI

class(chrI) # a DNAString instance
length(chrI) # with 15080483 nucleotides

6 BSgenome-class

Multiple sequences:
mseqnames(Celegans)
upstream1000 <- Celegans$upstream1000
upstream1000
class(upstream1000) # a DNAStringSet instance
Character vector containing the description lines of the first
4 sequences in the original FASTA file:
names(upstream1000)[1:4]

PASS-BY-ADDRESS SEMANTIC, CACHING AND MEMORY USAGE

We want a message to be printed each time a sequence is removed
from the cache:
options(verbose=TRUE)

gc() # nothing seems to be removed from the cache
rm(chrI, upstream1000)
gc() # chrI and upstream1000 are removed from the cache (they are

not in use anymore)

options(verbose=FALSE)

Get the current amount of data in memory (in Mb):
mem0 <- gc()["Vcells", "(Mb)"]

system.time(chrV <- Celegans[["chrV"]]) # read from disk

gc()["Vcells", "(Mb)"] - mem0 # chrV occupies 20Mb in memory

system.time(tmp <- Celegans[["chrV"]]) # much faster! (sequence
is in the cache)

gc()["Vcells", "(Mb)"] - mem0 # we're still using 20Mb (sequences
have a pass-by-address semantic
i.e. the sequence data are not
duplicated)

subseq() doesn't copy the sequence data either, hence it is very
fast and memory efficient (but the returned object will hold a
reference to chrV):
y <- subseq(chrV, 10, 8000000)
gc()["Vcells", "(Mb)"] - mem0

We must remove all references to chrV before it can be removed from
the cache (so the 20Mb of memory used by this sequence are freed).
options(verbose=TRUE)
rm(chrV, tmp)
gc()

Remember that 'y' holds a reference to chrV too:
rm(y)
gc()

options(verbose=FALSE)

BSgenomeForge 7

gc()["Vcells", "(Mb)"] - mem0

BSgenomeForge The BSgenomeForge functions

Description

A set of functions for making a BSgenome data package.

Usage

Top-level BSgenomeForge function:

forgeBSgenomeDataPkg(x, seqs_srcdir=".", masks_srcdir=".", destdir=".", verbose=TRUE)

Low-level BSgenomeForge functions:

forgeSeqlengthsFile(seqnames, prefix="", suffix=".fa",
seqs_srcdir=".", seqs_destdir=".", verbose=TRUE)

forgeSeqFiles(seqnames, mseqnames=NULL, prefix="", suffix=".fa",
seqs_srcdir=".", seqs_destdir=".", verbose=TRUE)

forgeMasksFiles(seqnames, nmask_per_seq,
seqs_destdir=".", masks_srcdir=".", masks_destdir=".",
AGAPSfiles_type="gap", AGAPSfiles_name=NA,
AGAPSfiles_prefix="", AGAPSfiles_suffix="_gap.txt",
RMfiles_name=NA, RMfiles_prefix="", RMfiles_suffix=".fa.out",
TRFfiles_name=NA, TRFfiles_prefix="", TRFfiles_suffix=".bed",
verbose=TRUE)

Arguments

x A BSgenomeDataPkgSeed object or the name of a BSgenome data package seed
file. See the BSgenomeForge vignette in this package for more information.

seqs_srcdir, masks_srcdir
Single strings indicating the path to the source directories i.e. to the directories
containing the source data files. Only read access to these directories is needed.
See the BSgenomeForge vignette in this package for more information.

destdir A single string indicating the path to the directory where the source tree of the
target package should be created. This directory must already exist. See the
BSgenomeForge vignette in this package for more information.

verbose TRUE or FALSE.
seqnames, mseqnames

A character vector containing the names of the single (for seqnames) and mul-
tiple (for mseqnames) sequences to forge. See the BSgenomeForge vignette
in this package for more information.

prefix, suffix
See the BSgenomeForge vignette in this package for more information, in par-
ticular the description of the seqfiles_prefix and seqfiles_suffix
fields of a BSgenome data package seed file.

8 BSgenome-utils

seqs_destdir, masks_destdir
During the forging process the source data files are converted into serialized
Biostrings objects. seqs_destdir and masks_destdir must be single
strings indicating the path to the directories where these serialized objects should
be saved. These directories must already exist.
forgeSeqlengthsFilewill produce a single .rda file. Both forgeSeqFiles
and forgeMasksFiles will produce one .rda file per sequence.

nmask_per_seq
A single integer indicating the desired number of masks per sequence. See the
BSgenomeForge vignette in this package for more information.

AGAPSfiles_type, AGAPSfiles_name, AGAPSfiles_prefix, AGAPSfiles_suffix, RMfiles_name, RMfiles_prefix, RMfiles_suffix, TRFfiles_name, TRFfiles_prefix, TRFfiles_suffix
These arguments are named accordingly to the corresponding fields of a BSgenome
data package seed file. See the BSgenomeForge vignette in this package for
more information.

Details

These functions are intended for Bioconductor users who want to make a new BSgenome data
package, not for regular users of these packages. See the BSgenomeForge vignette in this package
(vignette("BSgenomeForge")) for an extensive coverage of this topic.

Author(s)

H. Pages

Examples

forgeSeqFiles("chrM", prefix="ce2", suffix=".fa",
seqs_srcdir=system.file("extdata", package="BSgenome"),
seqs_destdir=tempdir())

load(file.path(tempdir(), "chrM.rda"))
chrM

BSgenome-utils BSgenome utilities

Description

Utilities for BSgenome objects.

Usage

S4 method for signature 'BSgenome':
matchPWM(pwm, subject, min.score = "80%", exclude = "")

S4 method for signature 'BSgenome':
countPWM(pwm, subject, min.score = "80%", exclude = "")

S4 method for signature 'BSgenome':
vmatchPattern(pattern, subject, algorithm="auto",

max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
exclude = "")

S4 method for signature 'BSgenome':

BSgenome-utils 9

vcountPattern(pattern, subject, algorithm="auto",
max.mismatch=0, min.mismatch=0,
with.indels=FALSE, fixed=TRUE,
exclude = "")

Arguments

pwm A numeric matrix with row names A, C, G and T representing a Position Weight
Matrix.

pattern The pattern string.

subject A BSgenome object containing the subject sequences.

min.score The minimum score for counting a match. Can be given as a character string
containing a percentage (e.g. "85%") of the highest possible score or as a single
number.

algorithm One of the following: "auto", "naive-exact", "naive-inexact",
"boyer-moore", "shift-or" or "indels".

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ¿lowlevel-
matching‘ for the details). If non-zero, an inexact matching algorithm is
used.

with.indels If TRUE then indels are allowed. In that case, min.mismatch must be 0
and max.mismatch is interpreted as the maximum "edit distance" allowed
between the pattern and a match. Note that in order to avoid pollution by redun-
dant matches, only the "best local matches" are returned. Roughly speaking, a
"best local match" is a match that is locally both the closest (to the pattern P)
and the shortest. More precisely, a substring S’ of the subject S is a "best local
match" iff:

(a) nedit(P, S') <= max.mismatch
(b) for every substring S1 of S':

nedit(P, S1) > nedit(P, S')
(c) for every substring S2 of S that contains S':

nedit(P, S2) <= nedit(P, S')

One nice property of "best local matches" is that their first and last letters are
guaranteed to be aligned with letters in P (i.e. they match letters in P).

fixed If FALSE then IUPAC extended letters are interpreted as ambiguities (see ¿lowlevel-
matching‘ for the details).

exclude A character vector with strings that will be used to filter out chromosomes whose
names match these strings.

Value

A RangedData object for matchPWM and vmatchPattern with two values columns: strand
(factor) and string (DNAStringSet).

A data.frame object for countPWM and vcountPattern with columns three columns: seqname
(factor), strand (factor), and count (integer).

Author(s)

P. Aboyoun

10 BSParams-class

See Also

matchPWM, matchPattern, bsapply

Examples

library(BSgenome.Celegans.UCSC.ce2)
data(HNF4alpha)

pwm <- PWM(HNF4alpha)
matchPWM(pwm, Celegans)
countPWM(pwm, Celegans)

pattern <- consensusString(HNF4alpha)
vmatchPattern(pattern, Celegans, fixed = "subject")
vcountPattern(pattern, Celegans, fixed = "subject")

BSParams-class Class "BSParams"

Description

A parameter class for representing all parameters needed for running the bsapply method.

Objects from the Class

Objects can be created by calls of the form new("BSParams", ...).

Slots

X: a BSgenome object that contains chromosomes that you wish to apply FUN on

FUN: the function to apply to each chromosome in the BSgenome object ’X’

exclude: this is a character vector with strings that will be used to filter out chromosomes whose
names match these strings.

simplify: TRUE/FALSE value to indicate whether or not the function should try to simplify the
output for you.

maskList: A named logical vector of maskStates preferred when used with a BSGenome object.
When using the bsapply function, the masks will be set to the states in this vector.

motifList: A character vector which should contain motifs that the user wishes to mask from
the sequence.

Methods

bsapply(p) Performs the function FUN using the parameters contained within BSParams.

Author(s)

Marc Carlson

See Also

bsapply

gdapply 11

gdapply Applies a function to elements of a GenomeData

Description

Returns a list of values obtained by applying a function to elements of a GenomeData or Genome-
DataList object.

Usage

gdapply(X, FUN, ...)

Arguments

X An object of class "GenomeData" or "GenomeDataList"

FUN A function to be applied to each chromosome-level sub-element of X.

... Further arguments; passed to FUN

Value

Typically an object of the same class as X.

Author(s)

Deepayan Sarkar

gdreduce Reduces arguments to a single GenomeData instance

Description

This function accepts one or more objects that are reduced, with a user-specified function, to a
single GenomeData instance.

Usage

gdreduce(f, ..., init, right = FALSE, accumulate = FALSE, gdArgs = list())

Arguments

f An object of class "function", accepting two instances of classes appropriate
for the ... arguments, and returning an object suitable for subsequent use in f
and incorporation into GenomeData.

... Objects to be reduced. All objects should be of the same class, as dictated by
methods defined on gdreduce A function to be applied to each chromosome-
level sub-element of X.

init An R object of the same kind as the elements of

right A logical indicating whether to proceed from left to right (default) or right to
left.

12 GenomeData-class

accumulate A logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

gdArgs Additional arguments passed to the GenomeData constructor used to assemble
the final object.

Value

An object of class GenomeData, containing elements corresponding to the intersection of all
named elements of

Author(s)

Martin Morgan

See Also

Reduce

Examples

showMethods(gdreduce, where=getNamespace("BSgenome"))

GenomeData-class Data on the genome

Description

GenomeData formally represents genomic data as a list, with one element per chromosome in the
genome.

Details

This class facilitates storing data on the genome by formalizing a set of metadata fields for storing
the organism (e.g. Mmusculus), genome build provider (e.g. UCSC), and genome build version
(e.g. mm9).

The data is represented as a list, with one element per chromosome (or really any sequence, like a
gene). There are no constraints as to the data type of the elements.

Note that as a SimpleList, it is possible to store chromosome-level data (e.g. the lengths) in the
elementMetadata slot. The organism, provider and providerVersion are all stored
in the SimpleList metadata, so they may be retrieved in list form by calling metadata(x).

Accessor methods

In the code snippets below, x is a GenomeData object.

organism(x): Get the single string indicating the organism, if specified, otherwise NULL.

provider(x): Get the single string indicating the genome build provider, if specified, otherwise
NULL.

providerVersion(x): Get the single string indicating the genome build version, if specified,
otherwise NULL.

GenomeData-class 13

Constructor

GenomeData(listData = list(), providerVersion = metadata[["providerVersion"]],
organism = metadata[["organism"]], provider = metadata[["provider"]],
metadata = list(), elementMetadata = NULL, ...): Creates a GenomeData
with the elements from the listData parameter, a list. The other arguments correspond to
the metadata fields, and, with the exception of elementMetadata, should all be either
single strings or NULL (unspecified). Additional global metadata elements may be passed in
metadata, in list-form, and via The elements in metadata are always overridden by
the explicit arguments, like organism and those in elementMetadata should be
an DataTable or NULL.

Coercion

as(from, "data.frame"): Coerces each subelement to a data frame, and binds them into
a single data frame with an additional column indicating chromosome

as(from, "RangesList"): Coerces each subelement to a Ranges and combines them
into a RangesList with the same names. The “universe” metadata property is set to the
providerVersion of from.

as(from, "RangedData"): Coerces each subelement to a RangedData and combines
them into a single RangedData with the same names. The “universe” metadata property
is set to the providerVersion of from.

Reduction

gdreduce(f, ..., init, right=FALSE, accumulate=FALSE, gdArgs=list()):
Successively combine GenomeData elements of ... using f; all arguments assigned to
... must be of class GenomeData. f is a function accepting two objects returned by "[["
applied to the successive elements of ..., returning a single GenomeData object to be used
in subsequent calls to f. init, right, and accumulate are as described for Reduce.
gdArgs can be used to provide metadata information to the constructor used to create the
final GenomeData object.

Author(s)

Michael Lawrence

See Also

GenomeDataList, a container of this class and useful for storing data on multiple samples.

SimpleList, the base of this class.

Examples

gd <- GenomeData(list(chr1 = IRanges(1, 10), chrX = IRanges(2, 5)),
organism = "Mmusculus", provider = "UCSC",
providerVersion = "mm9")

organism(gd)
providerVersion(gd)
provider(gd)
gd[["chr1"]] # get data for chromsome 1

14 GenomeDataList-class

GenomeDataList-class
List of GenomeData objects

Description

GenomeDataList is a list of GenomeData objects. It could be useful for storing data on mul-
tiple experiments or samples.

Details

This class inherits from SimpleList and requires that all of its elements to be instances of
GenomeData.

One should try to take advantage of the metadata storage facilities provided by SimpleList. The
elementMetadata field, for example, could be used to store the experimental design, while the
metadata field could store the experimental platform.

Constructor

GenomeDataList(listData = list(), metadata = list(), elementMetadata
= NULL): Creates a GenomeDataList with the elements from the listData parameter,
a list of GenomeData instances. The other arguments correspond to the optional metadata
stored in SimpleList.

Coercion

as(from, "data.frame"): Coerces each subelement to a data frame, and binds them into
a single data frame with an additional column indicating chromosome

Reduction

gdreduce(f, ..., init, right=FALSE, accumulate=FALSE, gdArgs=list()):
Currently this method works when a single GenomeDataList is provided as It suc-
cessively combines the GenomeData elements in the GenomeDataList using f. f is a
function accepting two objects returned by "[[" applied to the successive GenomeData
elements of ..., returning a single GenomeData object to be used in subsequent calls to
f. init, right, and accumulate are as described for Reduce. gdArgs can be used to
provide metadata information to the constructor used to create the final GenomeData object.

Author(s)

Michael Lawrence

See Also

GenomeData, the type of elements stored in this class. SimpleList

GenomeDescription-class 15

Examples

gd <- GenomeData(list(chr1 = IRanges(1, 10), chrX = IRanges(2, 5)),
organism = "Mmusculus", provider = "UCSC",
providerVersion = "mm9")

gdl <- GenomeDataList(list(gd), elementMetadata = DataFrame(induced = TRUE))
gdl[[1]] # get first element

gdr <- gdreduce(function(x, y) {
"[[" returns IRanges instances, construct a synthetic version
IRanges(c(start(x), start(y)), c(end(x), end(y)))

}, GenomeDataList(list(gd, gd[2])))
gdr[["chr1"]]
gdr[["chrX"]]

GenomeDescription-class
GenomeDescription objects

Description

A GenomeDescription object holds the meta information describing a given genome.

Details

In general the user will not need to manipulate directly a GenomeDescription instance but will
manipulate instead a higher-level object that belongs to a class containing the GenomeDescription
class. For example the top-level object defined in any BSgenome data package is a BSgenome ob-
ject. But because the BSgenome class contains the GenomeDescription class, it is also a GenomeDescrip-
tion object and can therefore be treated as such. In other words all the methods described below
will work on it.

Accessor methods

In the code snippets below, x is a GenomeDescription object.

organism(x): Return the target organism for this genome e.g. "Homo sapiens", "Mus
musculus", "Caenorhabditis elegans", etc...

species(x): Return the target species for this genome e.g. "Human", "Mouse", "Worm",
etc...

provider(x): Return the provider of this genome e.g. "UCSC", "BDGP", "FlyBase", etc...

providerVersion(x): Return the provider-side version of this genome. For example UCSC
uses versions "hg18", "hg17", etc... for the different Builds of the Human genome.

releaseDate(x): Return the release date of this genome e.g. "Mar. 2006".

releaseName(x): Return the release name of this genome, which is generally made of the
name of the organization who assembled it plus its Build version. For example, UCSC uses
"hg18" for the version of the Human genome corresponding to the Build 36.1 from NCBI
hence the release name for this genome is "NCBI Build 36.1".

Author(s)

H. Pages

16 getSeq

See Also

available.genomes, BSgenome-class

Examples

library(BSgenome.Celegans.UCSC.ce2)
provider(Celegans)
as(Celegans, "GenomeDescription")

getSeq getSeq

Description

A convenience function for extracting a set of sequences (or subsequences) from a BSgenome or
other object. This man page specifically documents the BSgenome method.

Usage

getSeq(x, ...)

S4 method for signature 'BSgenome':
getSeq(x, names, start=NA, end=NA, width=NA,

strand="+", as.character=TRUE)

Arguments

x A BSgenome object. See the available.genomes function for how to
install a genome.

names The names of the sequences to extract from x, or a RangedData or RangesList
object. If missing, then seqnames(x) is used.
See ?seqnames and ?mseqnames to get the list of single sequences and
multiple sequences (respectively) contained in x.
Here is how the lookup between the names passed to the names argument and
the sequences in x is performed. For each name in names: (1) if x contains a
single sequence with that name then this sequence is returned; (2) otherwise the
names of all the elements in all the multiple sequences are searched: name is
treated as a regular expression and grep is used for this search. If exactly one
sequence is found, then it’s returned, otherwise an error is raised.
If names is a RangedData or RangesList, the space, start, and width
are extracted and treated as the names, start and width arguments, respec-
tively. In the case of a RangedData, the “strand” column, if any, is extracted
and overrides the strand argument. If there is no “strand” column, all features
are assumed to be on the positive strand. A warning is emitted if any of the
overridden arguments is passed to the function.

start, end, width
Vector of integers (eventually with NAs). Overridden if names is a RangedData
or RangesList.

strand A vector containing +s or/and -s. Overridden if names is a RangedData.

getSeq 17

as.character TRUE or FALSE. Should the extracted sequences be returned in a standard char-
acter vector?

... Additional arguments. (Currently ignored.)

Details

The names, start, end, width and strand arguments are expanded cyclically to the length
of the longest provided none are of zero length.

Value

A standard character vector when as.character=TRUE. Note that when as.character=TRUE,
then the masks that are defined on top of the sequences to extract are ignored (i.e. dropped) if any
(see ¿MaskedXString-class‘ for more information about masked sequences).

A DNAString or MaskedDNAString object when as.character=FALSE. Note that as.character=FALSE
is not supported yet when extracting more than one sequence.

Note

Be aware that using as.character=TRUE can be very inefficient when the returned character
vector contains very long strings (> 1 million letters) or is itself a long vector (> 10000 strings).

getSeq is much more efficient when used with as.character=FALSE but this works only for
extracting one sequence at a time for now.

Author(s)

H. Pages; improvements suggested by Matt Settles and others

See Also

available.genomes, BSgenome-class, seqnames, mseqnames, grep, subseq,DataTable,
subseq,Sequence, DNAString, MaskedDNAString, [[,BSgenome-method

Examples

Load the Caenorhabditis elegans genome (UCSC Release ce2):
library(BSgenome.Celegans.UCSC.ce2)

Look at the index of sequences:
Celegans

Get chromosome V as a DNAString object:
getSeq(Celegans, "chrV", as.character=FALSE)
which is in fact the same as doing:
Celegans$chrV

Never try this:
#getSeq(Celegans, "chrV")
or this (even worse):
#getSeq(Celegans)

Get the first 20 bases of each chromosome:
getSeq(Celegans, end=20)

Get the last 20 bases of each chromosome:

18 injectSNPs

getSeq(Celegans, start=-20)

Extracting small sequences from different chromosomes:
myseqs <- data.frame(
chr=c("chrI", "chrX", "chrM", "chrM", "chrX", "chrI", "chrM", "chrI"),
start=c(NA, -40, 8510, 301, 30001, 9220500, -2804, -30),
end=c(50, NA, 8522, 324, 30011, 9220555, -2801, -11),
strand=c("+", "-", "+", "+", "-", "-", "+", "-")

)
getSeq(Celegans, myseqs$chr,

start=myseqs$start, end=myseqs$end)
getSeq(Celegans, myseqs$chr,

start=myseqs$start, end=myseqs$end, strand=myseqs$strand)

Get the "NM_058280_up_1000" sequence (belongs to the upstream1000
multiple sequence) as a character string:
s1 <- getSeq(Celegans, "NM_058280_up_1000")
or a DNAString object (more efficient):
s2 <- getSeq(Celegans, "NM_058280_up_1000", as.character=FALSE)

getSeq(Celegans, "NM_058280_up_5000", start=-1000) == s1 # TRUE

getSeq(Celegans, "NM_058280_up_5000",
start=-1000, as.character=FALSE) == s2 # TRUE

injectSNPs SNP injection

Description

Inject SNPs from a SNPlocs data package into a genome.

Usage

injectSNPs(x, SNPlocs_pkgname)

SNPlocs_pkgname(x)
SNPcount(x)
SNPlocs(x, seqname)

Related utilities
available.SNPs(type=getOption("pkgType"))
installed.SNPs()

Arguments

x A BSgenome object.
SNPlocs_pkgname

The name of a SNPlocs data package containing SNP information for the single
sequences contained in x. This package must be already installed (injectSNPs
won’t try to install it).

seqname The name of a single sequence in x.
type Character string indicating the type of package ("source", "mac.binary"

or "win.binary") to look for.

injectSNPs 19

Value

injectSNPs returns a copy of the original genome x where some or all of the single sequences
were altered by injecting the SNPs defined in the SNPlocs_pkgname package.

SNPlocs_pkgname, SNPcount and SNPlocs return NULL if no SNPs were injected in x
(i.e. if x is not a BSgenome object returned by a previous call to injectSNPs). Otherwise
SNPlocs_pkgname returns the name of the package from which the SNPs were injected, SNPcount
the number of SNPs for each altered sequence in x, and SNPlocs their locations in the sequence
whose name is specified by seqname.

available.SNPs returns a character vector containing the names of the SNPlocs data packages
that are currently available on the Bioconductor repositories for your version of R/Bioconductor. A
SNPlocs data package contains basic SNP information (location and alleles) for a given organism.

installed.SNPs returns a character vector containing the names of the SNPlocs data packages
that are already installed.

Note

injectSNPs, SNPlocs_pkgname, SNPcount and SNPlocs have the side effect to try to
load the SNPlocs data package if it’s not already loaded.

Author(s)

H. Pages

See Also

BSgenome-class, .inplaceReplaceLetterAt

Examples

What SNPlocs data packages are already installed:
installed.SNPs()

What SNPlocs data packages are available:
available.SNPs()

if (interactive()) {
Make your choice and install with:
source("http://bioconductor.org/biocLite.R")
biocLite("SNPlocs.Hsapiens.dbSNP.20071016")

}

Inject SNPs from dbSNP into the Human genome:
library(BSgenome.Hsapiens.UCSC.hg18)
Hsapiens
SNPlocs_pkgname(Hsapiens)

HsWithSNPs <- injectSNPs(Hsapiens, "SNPlocs.Hsapiens.dbSNP.20071016")
HsWithSNPs # note the extra "with SNPs injected from ..." line
SNPlocs_pkgname(HsWithSNPs)
SNPcount(HsWithSNPs)
SNPlocs(HsWithSNPs, "chr1")

alphabetFrequency(Hsapiens$chr1)
alphabetFrequency(HsWithSNPs$chr1)

20 strand

strand Accessing strand information

Description

The strand generic is meant as an accessor for strand information. Three methods are defined by
the BSgenome package, described below.

Usage

strand(x)

Arguments

x The object from which to obtain a strand factor, can be missing.

Details

If x is missing, returns an empty factor with the standard levels that any strand factor should have:
+, -, and * (for either).

If x is a character vector, x is coerced to a factor with the levels listed above.

If x inherits from DataTable, the "strand" column is returned as a factor with the levels listed
above. If x has no "strand" column, this return value is populated with NAs.

Author(s)

Michael Lawrence

Examples

strand()
strand(c("+", "-", NA, "*"))

Index

∗Topic classes
BSgenome-class, 4
BSParams-class, 10
GenomeData-class, 12
GenomeDataList-class, 14
GenomeDescription-class, 15

∗Topic manip
available.genomes, 1
bsapply, 2
BSgenomeForge, 7
gdapply, 11
gdreduce, 11
getSeq, 16
injectSNPs, 18

∗Topic methods
BSgenome-class, 4
BSgenome-utils, 8
GenomeData-class, 12
GenomeDataList-class, 14
GenomeDescription-class, 15
strand, 20

∗Topic utilities
BSgenome-utils, 8

.inplaceReplaceLetterAt, 19
[[,BSgenome-method, 17
[[,BSgenome-method

(BSgenome-class), 4
[[<-,BSgenome-method

(BSgenome-class), 4
$,BSgenome-method

(BSgenome-class), 4

available.genomes, 1, 5, 16, 17
available.packages, 2
available.SNPs (injectSNPs), 18

bsapply, 2, 10
BSgenome, 1, 9, 15, 16, 18, 19
BSgenome (BSgenome-class), 4
BSgenome-class, 17
BSgenome-utils, 5
BSgenome-class, 2, 3, 4, 16, 19
BSgenome-utils, 3, 8
BSgenome.Hsapiens.UCSC.hg18, 5

BSgenomeDataPkgSeed
(BSgenomeForge), 7

BSgenomeDataPkgSeed-class
(BSgenomeForge), 7

BSgenomeForge, 7
BSParams (BSParams-class), 10
BSParams-class, 3, 10

class:BSgenome (BSgenome-class), 4
class:BSgenomeDataPkgSeed

(BSgenomeForge), 7
class:BSParams (BSParams-class),

10
class:GenomeDescription

(GenomeDescription-class),
15

coerce,GenomeData,data.frame-method
(GenomeData-class), 12

coerce,GenomeData,RangedData-method
(GenomeData-class), 12

coerce,GenomeData,RangesList-method
(GenomeData-class), 12

coerce,GenomeDataList,data.frame-method
(GenomeDataList-class), 14

countPWM,BSgenome-method
(BSgenome-utils), 8

DataTable, 13
DNAString, 17

forgeBSgenomeDataPkg
(BSgenomeForge), 7

forgeBSgenomeDataPkg,BSgenomeDataPkgSeed-method
(BSgenomeForge), 7

forgeBSgenomeDataPkg,character-method
(BSgenomeForge), 7

forgeBSgenomeDataPkg,list-method
(BSgenomeForge), 7

forgeMasksFiles (BSgenomeForge), 7
forgeSeqFiles (BSgenomeForge), 7
forgeSeqlengthsFile

(BSgenomeForge), 7

gc, 5

21

22 INDEX

gdApply (gdapply), 11
gdapply, 11
gdApply,GenomeData,function-method

(gdapply), 11
gdapply,GenomeData,function-method

(gdapply), 11
gdApply,GenomeDataList,function-method

(gdapply), 11
gdapply,GenomeDataList,function-method

(gdapply), 11
gdreduce, 11
gdreduce,GenomeData-method

(GenomeData-class), 12
gdreduce,GenomeDataList-method

(GenomeDataList-class), 14
GenomeData, 11–14
GenomeData (GenomeData-class), 12
GenomeData-class, 3, 12
GenomeDataList, 13
GenomeDataList

(GenomeDataList-class), 14
GenomeDataList-class, 14
GenomeDescription, 4
GenomeDescription

(GenomeDescription-class),
15

GenomeDescription-class, 5
GenomeDescription-class, 15
getSeq, 5, 16
getSeq,BSgenome-method (getSeq),

16
grep, 16, 17

injectSNPs, 5, 18
injectSNPs,BSgenome-method

(injectSNPs), 18
installed.genomes

(available.genomes), 1
installed.SNPs (injectSNPs), 18

length, 4
length,BSgenome-method

(BSgenome-class), 4
lowlevel-matching, 9

MaskedDNAString, 17
MaskedXString, 4
MaskedXString-class, 4, 5, 17
masknames (BSgenome-class), 4
masknames,BSgenome-method

(BSgenome-class), 4
matchPattern, 5, 10
matchPWM, 10

matchPWM,BSgenome-method
(BSgenome-utils), 8

mseqnames, 16, 17
mseqnames (BSgenome-class), 4
mseqnames,BSgenome-method

(BSgenome-class), 4

names,BSgenome-method
(BSgenome-class), 4

organism
(GenomeDescription-class),
15

organism,GenomeData-method
(GenomeData-class), 12

organism,GenomeDescription-method
(GenomeDescription-class),
15

provider
(GenomeDescription-class),
15

provider,GenomeData-method
(GenomeData-class), 12

provider,GenomeDescription-method
(GenomeDescription-class),
15

providerVersion
(GenomeDescription-class),
15

providerVersion,GenomeData-method
(GenomeData-class), 12

providerVersion,GenomeDescription-method
(GenomeDescription-class),
15

RangedData, 9, 13
Ranges, 13
RangesList, 13
Reduce, 13, 14
releaseDate

(GenomeDescription-class),
15

releaseDate,GenomeDescription-method
(GenomeDescription-class),
15

releaseName
(GenomeDescription-class),
15

releaseName,GenomeDescription-method
(GenomeDescription-class),
15

rm, 5

INDEX 23

seqlengths (BSgenome-class), 4
seqlengths,BSgenome-method

(BSgenome-class), 4
seqnames, 16, 17
seqnames (BSgenome-class), 4
seqnames,BSgenome-method

(BSgenome-class), 4
show,BSgenome-method

(BSgenome-class), 4
show,GenomeData-method

(GenomeData-class), 12
show,GenomeDescription-method

(GenomeDescription-class),
15

SimpleList, 12–14
SNPcount (injectSNPs), 18
SNPcount,BSgenome-method

(injectSNPs), 18
SNPlocs (injectSNPs), 18
SNPlocs,BSgenome-method

(injectSNPs), 18
SNPlocs_pkgname (injectSNPs), 18
SNPlocs_pkgname,BSgenome-method

(injectSNPs), 18
sourceUrl (BSgenome-class), 4
sourceUrl,BSgenome-method

(BSgenome-class), 4
species

(GenomeDescription-class),
15

species,GenomeDescription-method
(GenomeDescription-class),
15

strand, 20
strand,character-method (strand),

20
strand,DataTable-method (strand),

20
strand,missing-method (strand), 20
strand-methods (strand), 20
subseq,DataTable, 5, 17
subseq,Sequence, 5, 17

vcountPattern,BSgenome-method
(BSgenome-utils), 8

vmatchPattern,BSgenome-method
(BSgenome-utils), 8

XString, 4
XString-class, 5
XStringSet-class, 4, 5

	available.genomes
	bsapply
	BSgenome-class
	BSgenomeForge
	BSgenome-utils
	BSParams-class
	gdapply
	gdreduce
	GenomeData-class
	GenomeDataList-class
	GenomeDescription-class
	getSeq
	injectSNPs
	strand
	Index

