
AnnotationDbi
April 19, 2010

AnnDbBimap-envirAPI
Environment-like API for AnnDbBimap objects

Description

These methods allow the user to manipulate any AnnDbBimap object as if it was an environment.
This environment-like API is provided for backward compatibility with the traditional environment-
based maps.

Usage

ls(name, pos, envir, all.names, pattern)
exists(x, where, envir, frame, mode, inherits)
get(x, pos, envir, mode, inherits)
#x[[i]]
#x$name

Converting to a list
mget(x, envir, mode, ifnotfound, inherits)
eapply(env, FUN, ..., all.names, USE.NAMES)
#contents(object, all.names)

Additional convenience method
sample(x, size, replace=FALSE, prob=NULL)

Arguments

name An AnnDbBimap object for ls. A key as a literal character string or a name
(possibly backtick quoted) for x$name.

pos Ignored.

envir Ignored for ls. An AnnDbBimap object for mget, get and exists.

all.names Ignored.

USE.NAMES Ignored.

pattern An optional regular expression. Only keys matching ’pattern’ are returned.

x The key(s) to search for for exists, get and mget. An AnnDbBimap object
for [[and x$name. An AnnDbBimap object or an environment for sample.

1

2 AnnDbObj-objects

where Ignored.

frame Ignored.

mode Ignored.

inherits Ignored.

i Single key specifying the map element to extract.

ifnotfound A value to be used if the key is not found. Only NA is currently supported.

env An AnnDbBimap object.

FUN The function to be applied (see original eapply for environments for the de-
tails).

... Optional arguments to FUN.

size Non-negative integer giving the number of map elements to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the map being
sampled.

See Also

ls, exists, get, mget, eapply, contents, sample, BimapFormatting, Bimap

Examples

library(hgu95av2.db)
x <- hgu95av2CHRLOC

ls(x)[1:3]
exists(ls(x)[1], x)
exists("titi", x)
get(ls(x)[1], x)
x[[ls(x)[1]]]
x$titi # NULL

mget(ls(x)[1:3], x)
eapply(x, length)
contents(x)

sample(x, 3)

AnnDbObj-objects AnnDbObj objects

Description

The AnnDbObj class is the most general container for storing any kind of SQLite-based annotation
data.

Details

Many classes in AnnotationDbi inherit directly or indirectly from the AnnDbObj class. One impor-
tant particular case is the AnnDbBimap class which is the lowest class in the AnnDbObj hierarchy
to also inherit the Bimap interface.

AnnDbObj-objects 3

Accessor-like methods

In the code snippets below, x is an AnnDbObj object.

dbconn(x): Return a connection object to the SQLite DB containing x’s data.

dbfile(x): Return the path (character string) to the SQLite DB (file) containing x’s data.

dbmeta(x, name): Print the value of metadata whose name is ’name’. Also works if x is a
DBIConnection object.

dbschema(x, file="", show.indices=FALSE): Print the schema definition of the SQLite
DB. Also works if x is a DBIConnection object.
The file argument must be a connection, or a character string naming the file to print to (see
the file argument of the cat function for the details).
The CREATE INDEX statements are not shown by default. Use show.indices=TRUE to
get them.

dbInfo(x): Prints other information about the SQLite DB. Also works if x is a DBIConnection
object.

See Also

dbConnect, dbListTables, dbListFields, dbGetQuery, Bimap

Examples

library("hgu95av2.db")

dbconn(hgu95av2ENTREZID) # same as hgu95av2_dbconn()
dbfile(hgu95av2ENTREZID) # same as hgu95av2_dbfile()

dbmeta(hgu95av2_dbconn(), "ORGANISM")
dbmeta(hgu95av2_dbconn(), "DBSCHEMA")
dbmeta(hgu95av2_dbconn(), "DBSCHEMAVERSION")

library("DBI")
dbListTables(hgu95av2_dbconn()) #lists all tables on connection

If you use dbSendQuery instead of dbGetQuery
(NOTE: for ease of use, this is defintitely NOT reccomended)
Then you may need to know how to list results objects
dbListResults(hgu95av2_dbconn()) #for listing results objects

Sometimes you may want to see all the SQLite databases that are
presently connected in your session. To do that you have to specify
the driver:
library("RSQLite")
drvr <- dbDriver("SQLite") #gets the driver for SQLite
dbListConnections(drvr) #List all DB Connections using drvr

dbListFields(hgu95av2_dbconn(), "probes")
dbListFields(hgu95av2_dbconn(), "genes")
dbschema(hgu95av2ENTREZID) # same as hgu95av2_dbschema()
According to the schema, the probes._id column references the genes._id
column. Note that in all tables, the "_id" column is an internal id with
no biological meaning (provided for allowing efficient joins between

4 AnnDbPkg-checker

tables).
The information about the probe to gene mapping is in probes:
dbGetQuery(hgu95av2_dbconn(), "SELECT * FROM probes LIMIT 10")
This mapping is in fact the ENTREZID map:
toTable(hgu95av2ENTREZID)[1:10,] # only relevant columns are retrieved

dbInfo(hgu95av2GO) # same as hgu95av2_dbInfo()

##Advanced example:
##Sometimes you may wish to join data from across multiple databases at
##once:
In the following example we will attach the GO database to the
hgu95av2 database, and then grab information from separate tables
in each database that meet a common criteria.
library(hgu95av2.db)
library("GO.db")
attachSql <- paste('ATTACH "', GO_dbfile(), '" as go;', sep = "")
dbGetQuery(hgu95av2_dbconn(), attachSql)
sql <- 'SELECT DISTINCT a.go_id AS "hgu95av2.go_id",

a._id AS "hgu95av2._id",
g.go_id AS "GO.go_id", g._id AS "GO._id",
g.term, g.ontology, g.definition
FROM go_bp_all AS a, go.go_term AS g
WHERE a.go_id = g.go_id LIMIT 10;'

data <- dbGetQuery(hgu95av2_dbconn(), sql)
data
For illustration purposes, the internal id "_id" and the "go_id"
from both tables is included in the output. This makes it clear
that the "go_ids" can be used to join these tables but the internal
ids can NOT. The internal IDs (which are always shown as _id) are
suitable for joins within a single database, but cannot be used
across databases.

AnnDbPkg-checker Check the SQL data contained in an SQLite-based annotation package

Description

Check the SQL data contained in an SQLite-based annotation package.

Usage

checkMAPCOUNTS(pkgname)

Arguments

pkgname The name of the SQLite-based annotation package to check.

Author(s)

H. Pages

See Also

AnnDbPkg-maker

AnnDbPkg-maker 5

Examples

checkMAPCOUNTS("hgu95av2.db")
checkMAPCOUNTS("GO.db")

AnnDbPkg-maker Creates an SQLite-based annotation package

Description

Creates an SQLite-based annotation package from an SQLite file.

Usage

makeAnnDbPkg(x, dbfile, dest_dir=".", no.man=FALSE, ...)
loadAnnDbPkgIndex(file)

Arguments

x A AnnDbPkgSeed object, a list, a string or a regular expression.

dbfile The path to the SQLite containing the annotation data for the package to build.

dest_dir The directory where the package will be created.

file The path to a DCF file containing the list of annotation packages to build.

no.man If TRUE then no man page is included in the package.

... Extra args used for extra filtering.

See Also

AnnDbPkg-checker

Examples

With a "AnnDbPkgSeed" object:
seed <- new("AnnDbPkgSeed",

Package="hgu133a2.db",
Version="0.0.99",
PkgTemplate="HUMANCHIP.DB",
AnnObjPrefix="hgu133a2"

)
if (FALSE)

makeAnnDbPkg(seed, "path/to/hgu133a2.sqlite")

With package names:
(Note that in this case makeAnnDbPkg() will use the package descriptions
found in the master index file ANNDBPKG-INDEX.TXT located in the
AnnotationDbi package.)
if (FALSE)

makeAnnDbPkg(c("hgu95av2.db", "hgu133a2.db"))

A character vector of length 1 is treated as a regular expression:
if (FALSE)

makeAnnDbPkg("hgu.*")

6 available.db0pkgs

To make all the packages described in the master index:
if (FALSE)

makeAnnDbPkg("")
Extra args can be used to narrow down the roaster of packages to make:
if (FALSE) {

makeAnnDbPkg("", PkgTemplate="HUMANCHIP.DB", manufacturer="Affymetrix")
makeAnnDbPkg(".*[3k]\\.db", species=c("Mouse", "Rat"))

}

The master index file ANNDBPKG-INDEX.TXT can be loaded with:
loadAnnDbPkgIndex()

available.db0pkgs available.db0pkgs

Description

Get the list of intermediate annotation data packages (.db0 data packages) that are currently avail-
able on the Bioconductor repositories for your version of R/Bioconductor.

Or get a list of schemas supported by AnnotationDbi.

Usage

available.db0pkgs()
available.dbschemas()
available.chipdbschemas()

Details

The SQLForge code uses a series of intermediate database packages that are necessary to build
updated custom annotation packages. These packages must be installed or updated if you want to
make a custom annotation package for a particular organism. These special intermediate packages
contain the latest freeze of the data needed to build custom annotation data packages and are easily
identified by the fact that they end with the special ".db0" suffix. This function will list all such
packages that are available for a specific version of bioconductor.

The available.dbschemas() and available.chipdbschemas() functions allow you to get a list of the
schema names that are available similar to how you can list the available ".db0" packages by using
available.db0pkgs(). This list of shemas is useful (for example) when you want to build a new
package and need to know the name of the schema you want to use.

Value

A character vector containing the names of the available ".db0" data packages. Or a a character
vector listing the names of the available schemas.

Author(s)

H. Pages and Marc Carlson

Bimap-direction 7

Examples

Get the list of BSgenome data packages currently available:
available.db0pkgs()

Not run:
Make your choice and install like this:
source("http://bioconductor.org/biocLite.R")
biocLite("human.db0")

End(Not run)

Get the list of chip DB schemas:
available.chipdbschemas()

Get the list of ALL DB schemas:
available.dbschemas()

Bimap-direction Methods for getting/setting the direction of a Bimap object, and undi-
rected methods for getting/counting/setting its keys

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

They are divided in 2 groups: (1) methods for getting or setting the direction of a Bimap object and
(2) methods for getting, counting or setting the left or right keys (or mapped keys only) of a Bimap
object. Note that all the methods in group (2) are undirected methods i.e. what they return does
NOT depend on the direction of the map (more on this below).

Usage

Getting or setting the direction of a Bimap object
direction(x)
direction(x) <- value
revmap(x, ...)

Getting, counting or setting the left or right keys (or mapped
keys only) of a Bimap object
Lkeys(x)
Rkeys(x)
Llength(x)
Rlength(x)
mappedLkeys(x)
mappedRkeys(x)
count.mappedLkeys(x)
count.mappedRkeys(x)
Lkeys(x) <- value
Rkeys(x) <- value
subset(x, ...)

8 Bimap-direction

Arguments

x A Bimap object.

value A single integer or character string indicating the new direction in direction(x)
<- value. A character vector containing the new keys (must be a subset of
the current keys) in Lkeys(x) <- value and Rkeys(x) <- value.

... Extra argument for revmap can be:

objName The name to give to the reversed map (only supported if x is an
AnnDbBimap object).

Extra arguments for subset can be:

Lkeys The new Lkeys.
Rkeys The new Rkeys.
drop.invalid.keys If drop.invalid.keys=FALSE (the default), an

error will be raised if the new Lkeys or Rkeys contain invalid keys i.e. keys
that don’t belong to the current Lkeys or Rkeys. If drop.invalid.keys=TRUE,
invalid keys are silently dropped.

objName The name to give to the submap (only supported if x is an AnnDb-
Bimap object).

Details

All Bimap objects have a direction which can be left-to-right (i.e. the mapping goes from the left
keys to the right keys) or right-to-left (i.e. the mapping goes from the right keys to the left keys).
A Bimap object x that maps from left to right is considered to be a direct map. Otherwise it is
considered to be an indirect map (when it maps from right to left).

direction returns 1 on a direct map and -1 otherwise.

The direction of x can be changed with direction(x) <- value where value must be 1 or
-1. An easy way to reverse a map (i.e. to change its direction) is to do direction(x) <- -
direction(x), or, even better, to use revmap(x) which is actually the recommended way for
doing it.

The Lkeys and Rkeys methods return respectively the left and right keys of a Bimap object. Un-
like the keys method (see ?keys for more information), these methods are direction-independent
i.e. what they return does NOT depend on the direction of the map. Such methods are also said to
be "undirected methods" and methods like the keys method are said to be "directed methods".

All the methods described below are also "undirected methods".

Llength(x) and Rlength(x) are equivalent to (but more efficient than) length(Lkeys(x))
and length(Rkeys(x)), respectively.

The mappedLkeys (or mappedRkeys) method returns the left keys (or right keys) that are
mapped to at least one right key (or one left key).

count.mappedLkeys(x) and count.mappedRkeys(x) are equivalent to (but more ef-
ficient than) length(mappedLkeys(x)) and length(mappedRkeys(x)), respectively.
These functions give overall summaries, if you want to know how many Rkeys correspond to a
given Lkey you can use the nhit function.

Lkeys(x) <- value and Rkeys(x) <- value are the undirected versions of keys(x)
<- value (see ?keys for more information) and subset(x, Lkeys=new_Lkeys, Rkeys=new_Rkeys)
is provided as a convenient way to reduce the sets of left and right keys in one single function call.

Bimap-direction 9

Value

1L or -1L for direction.

A Bimap object of the same subtype as x for revmap and subset.

A character vector for Lkeys, Rkeys, mappedLkeys and mappedRkeys.

A single non-negative integer for Llength, Rlength, count.mappedLkeys and count.mappedRkeys.

Author(s)

H. Pages

See Also

Bimap, Bimap-keys, BimapFormatting, AnnDbBimap-envirAPI, nhit

Examples

library(hgu95av2.db)
ls(2)
x <- hgu95av2GO
x
summary(x)
direction(x)

length(x)
Llength(x)
Rlength(x)

keys(x)[1:4]
Lkeys(x)[1:4]
Rkeys(x)[1:4]

count.mappedkeys(x)
count.mappedLkeys(x)
count.mappedRkeys(x)

mappedkeys(x)[1:4]
mappedLkeys(x)[1:4]
mappedRkeys(x)[1:4]

y <- revmap(x)
y
summary(y)
direction(y)

length(y)
Llength(y)
Rlength(y)

keys(y)[1:4]
Lkeys(y)[1:4]
Rkeys(y)[1:4]

etc...

Get rid of all unmapped keys (left and right)

10 toggleProbes

z <- subset(y, Lkeys=mappedLkeys(y), Rkeys=mappedRkeys(y))

toggleProbes Methods for getting/setting the filters on a Bimap object

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Some of these methods are for getting or setting the filtering status on a Bimap object so that the
mapping object can toggle between displaying all probes, only single probes (the defualt) or only
multiply matching probes.

Other methods are for viewing or setting the filter threshold value on a InpAnnDbBimap object.

Usage

Making a Bimap object that does not prefilter to remove probes that
match multiple genes:
toggleProbes(x, value)
hasMultiProbes(x) ##T/F test for exposure of single probes
hasSingleProbes(x) ##T/F test for exposure of mulitply matched probes

Looking at the SQL filter values for a Bimap
getBimapFilters(x)
Setting the filter on an InpAnnDbBimap object
setInpBimapFilter(x,value)

Arguments

x A Bimap object.
value A character vector containing the new value that the Bimap should use as the

filter. Or the value to toggle a probe mapping to: "all", "single", or "multiple".

Details

toggleProbes(x) is a methods for creating Bimaps that have an alternate filter for which probes
get exposed based upon whether these probes map to multiple genes or not.

hasMultiProbes(x) and hasSingleProbes(x) are provided to give a quick test about
whether or not such probes are exposed in a given mapping.

getBimapFilters(x) will list all the SQL filters applied to a Bimap object.

setInpBimapFilters(x) will allow you to pass a value as a character string which will be
used as a filter. In order to be useful with the InpAnnDbBimap objects provided in the inparanoid
packages, this value needs to be a to digit number written as a percentage. So for example "80 is
owing to the nature of the inparanoid data set.

Value

A Bimap object of the same subtype as x for exposeAllProbes(x), maskMultiProbes(x)
and maskSingleProbes(x).

A TRUE or FALSE value in the case of hasMultiProbes(x) and hasSingleProbes(x).

BimapFormatting 11

Author(s)

M. Carlson

See Also

Bimap, Bimap-keys, Bimap-direction, BimapFormatting, AnnDbBimap-envirAPI, nhit

Examples

Make a Bimap that contains all the probes
require("hgu95av2.db")
mapWithMultiProbes <- toggleProbes(hgu95av2ENTREZID, "all")
count.mappedLkeys(hgu95av2ENTREZID)
count.mappedLkeys(mapWithMultiProbes)

Check that it has both multiply and singly matching probes:
hasMultiProbes(mapWithMultiProbes)
hasSingleProbes(mapWithMultiProbes)

Make it have Multi probes ONLY:
OnlyMultiProbes = toggleProbes(mapWithMultiProbes, "multiple")
hasMultiProbes(OnlyMultiProbes)
hasSingleProbes(OnlyMultiProbes)

Convert back to a default map with only single probes exposed
OnlySingleProbes = toggleProbes(OnlyMultiProbes, "single")
hasMultiProbes(OnlySingleProbes)
hasSingleProbes(OnlySingleProbes)

List the filters on the inparanoid mapping
library(hom.Dm.inp.db)
getBimapFilters(hom.Dm.inpANOGA)

Here is how you can make a mapping with a
##different filter than the default:
f80 = setInpBimapFilter(hom.Dm.inpANOGA, "80%")
dim(hom.Dm.inpANOGA)
dim(f80)

BimapFormatting Formatting a Bimap as a list or character vector

Description

These functions format a Bimap as a list or character vector.

Usage

Formatting as a list
as.list(x, ...)

12 Bimap-keys

Formatting as a character vector
#as.character(x, ...)

Arguments

x A Bimap object.

... Further arguments are ignored.

Author(s)

H. Pages

See Also

Bimap, AnnDbBimap-envirAPI

Examples

library(hgu95av2.db)
as.list(hgu95av2CHRLOC)[1:9]
as.list(hgu95av2ENTREZID)[1:9]
as.character(hgu95av2ENTREZID)[1:9]

Bimap-keys Methods for manipulating the keys of a Bimap object

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Usage

keys(x)
#length(x)
isNA(x)
mappedkeys(x)
count.mappedkeys(x)
keys(x) <- value
#x[i]

Arguments

x A Bimap object.

value A character vector containing the new keys (must be a subset of the current
keys).

i A character vector containing the keys of the map elements to extract.

Bimap-keys 13

Details

keys(x) returns the set of all valid keys for map x. For example, keys(hgu95av2GO) is the
set of all probe set IDs for chip hgu95av2 from Affymetrix. Note that the double bracket operator
[[for Bimap objects is guaranteed to work only with a valid key and will raise an error if the key
is invalid. (See ¿AnnDbBimap-envirAPI‘ for more information about this operator.)

length(x) is equivalent to (but more efficient than) length(keys(x)).

A valid key is not necessarily mapped ([[will return an NA on an unmapped key).

isNA(x) returns a logical vector of the same length as x where the TRUE value is used to mark
keys that are NOT mapped and the FALSE value to mark keys that ARE mapped.

mappedkeys(x) returns the subset of keys(x) where only mapped keys were kept.

count.mappedkeys(x) is equivalent to (but more efficient than) length(mappedkeys(x)).

Two (almost) equivalent forms of subsetting a Bimap object are provided: (1) by setting the keys
explicitely and (2) by using the single bracket operator [for Bimap objects. Let’s say the user
wants to restrict the mapping to the subset of valid keys stored in character vector mykeys. This
can be done either with keys(x) <- mykeys (form (1)) or with y <- x[mykeys] (form
(2)). Please note that form (1) alters object x in an irreversible way (the original keys are lost) so
form (2) should be preferred.

All the methods described on this pages are "directed methods" i.e. what they return DOES de-
pend on the direction of the Bimap object that they are applied to (see ?direction for more
information about this).

Value

A character vector for keys and mappedkeys.

A single non-negative integer for length and count.mappedkeys.

A logical vector for isNA.

A Bimap object of the same subtype as x for x[i].

Author(s)

H. Pages

See Also

Bimap, AnnDbBimap-envirAPI, Bimap-toTable, BimapFormatting

Examples

library(hgu95av2.db)
x <- hgu95av2GO
x
length(x)
count.mappedkeys(x)
x[1:3]
links(x[1:3])

Keep only the mapped keys
keys(x) <- mappedkeys(x)
length(x)
count.mappedkeys(x)
x # now it is a submap

14 Bimap

The above subsetting can also be achieved with
x <- hgu95av2GO[mappedkeys(hgu95av2GO)]

mappedkeys() and count.mappedkeys() also work with an environment
or a list
z <- list(k1=NA, k2=letters[1:4], k3="x")
mappedkeys(z)
count.mappedkeys(z)

Bimap Bimap objects and the Bimap interface

Description

What we usually call "annotation maps" are in fact Bimap objects. In the following sections we
present the bimap concept and the Bimap interface as it is defined in AnnotationDbi.

Display methods

In the code snippets below, x is a Bimap object.

show(x): Display minimal information about Bimap object x.

summary(x): Display a little bit more information about Bimap object x.

The bimap concept

A bimap is made of:

- 2 sets of objects: the left objects and the right objects.
All the objects have a name and this name is unique in
each set (i.e. in the left set and in the right set).
The names of the left (resp. right) objects are called the
left (resp. right) keys or the Lkeys (resp. the Rkeys).

- Any number of links (edges) between the left and right
objects. Note that the links can be tagged. In our model,
for a given bimap, either none or all the links are tagged.

In other words, a bimap is a bipartite graph.

Here are some examples:

1. bimap B1:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Links (edges):
"a" <--> "A"

Bimap 15

"a" <--> "B"
"b" <--> "A"
"d" <--> "C"

Note that:
- There can be any number of links starting from or ending

at a given object.
- The links in this example are untagged.

2. bimap B2:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Tagged links (edges):
"a" <-"x"-> "A"
"a" <-"y"-> "B"
"b" <-"x"-> "A"
"d" <-"x"-> "C"
"d" <-"y"-> "C"

Note that there are 2 links between objects "d" and "C":
1 with tag "x" and 1 with tag "y".

Flat representation of a bimap

The flat representation of a bimap is a data frame. For example, for B1, it is:

left right
a A
a B
b A
d C

If in addition the right objects have 1 multivalued attribute, for example, a numeric vector:

A <-- c(1.2, 0.9)
B <-- character(0)
C <-- -1:1

then the flat representation of B1 becomes:

left right Rattrib1
a A 1.2
a A 0.9
a B NA
b A 1.2
b A 0.9
d C -1

16 Bimap

d C 0
d C 1

Note that now the number of rows is greater than the number of links!

AnnDbBimap and FlatBimap objects

An AnnDbBimap object is a bimap whose data are stored in a data base. A FlatBimap object is
a bimap whose data (left keys, right keys and links) are stored in memory (in a data frame for
the links). Conceptually, AnnDbBimap and FlatBimap objects are the same (only their internal
representation differ) so it’s natural to try to define a set of methods that make sense for both (so
they can be manipulated in a similar way). This common interface is the Bimap interface.

Note that both AnnDbBimap and FlatBimap objects have a read-only semantic: the user can subset
them but cannot change their data.

The "flatten" generic

flatten(x) converts AnnDbBimap object x into FlatBimap
object y with no loss of information

Note that a FlatBimap object can’t be converted into an AnnDbBimap object (well, in theory maybe
it could be, but for now the data bases we use to store the data of the AnnDbBimap objects are
treated as read-only). This conversion from AnnDbBimap to FlatBimap is performed by the "flat-
ten" generic function (with methods for AnnDbBimap objects only).

Property0

The "flatten" generic plays a very useful role when we need to understand or explain exactly what
a given Bimap method f will do when applied to an AnnDbBimap object. It’s generally easier to
explain what it does on a FlatBimap object and then to just say "and it does the same thing on an
AnnDbBimap object". This is exactly what Property0 says:

for any AnnDbBimap object x, f(x) is expected to be
indentical to f(flatten(x))

Of course, this implies that the f method for AnnDbBimap objects return the same type of object
than the f method for FlatBimap objects. In this sense, the "revmap" and "subset" Bimap methods
are particular because they are expected to return an object of the same class as their argument x, so
f(x) can’t be identical to f(flatten(x)). For these methods, Property0 says:

for any AnnDbBimap object x, flatten(f(x)) is expected to
be identical to f(flatten(x))

Note to the AnnotationDbi maintainers/developpers: the checkProperty0 function (AnnDbPkg-
checker.R file) checks that Property0 is satisfied on all the AnnDbBimap objects defined in a given
package (FIXME: checkProperty0 is currently broken).

The Bimap interface in AnnotationDbi

The full documentation for the methods of the Bimap interface is splitted into 4 man pages: Bimap-
direction, Bimap-keys and Bimap-toTable.

Bimap-toTable 17

See Also

Bimap-direction, Bimap-keys, Bimap-toTable, BimapFormatting, AnnDbBimap-envirAPI

Examples

library(hgu95av2.db)
ls(2)
hgu95av2GO # calls the "show" method
summary(hgu95av2GO)
hgu95av2GO2PROBE # calls the "show" method
summary(hgu95av2GO2PROBE)

Bimap-toTable Methods for manipulating a Bimap object in a data-frame style

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Usage

Extract all the columns of the map (links + right attributes)
toTable(x)
nrow(x)
ncol(x)
#dim(x)
head(x, ...)
tail(x, ...)

Extract only the links of the map
links(x)
count.links(x)
nhit(x)

Col names and col metanames
colnames(x, do.NULL=TRUE, prefix="col")
colmetanames(x)
Lkeyname(x)
Rkeyname(x)
keyname(x)
tagname(x)
Rattribnames(x)
Rattribnames(x) <- value

Arguments

x A Bimap object (or a list or an environment for nhit).

... Further arguments to be passed to or from other methods (see head or tail
for the details).

do.NULL Ignored.

18 Bimap-toTable

prefix Ignored.
value A character vector containing the names of the new right attributes (must be a

subset of the current right attribute names) or NULL.

Details

toTable(x) turns Bimap object x into a data frame (see section "Flat representation of a bimap"
in ?Bimap for a short introduction to this concept). For simple maps (i.e. no tags and no right
attributes), the resulting data frame has only 2 columns, one for the left keys and one for the right
keys, and each row in the data frame represents a link (or edge) between a left and a right key. For
maps with tagged links (i.e. a tag is associated to each link), toTable(x) has one additional
colmun for the tags and there is still one row per link. For maps with right attributes (i.e. a set of
attributes is associated to each right key), toTable(x) has one additional colmun per attribute.
So for example if x has tagged links and 2 right attributes, toTable(x) will have 5 columns: one
for the left keys, one for the right keys, one for the tags, and one for each right attribute (always the
rightmost columns). Note that if at least one of the right attributes is multivalued then more than
1 row can be needed to represent the same link so the number of rows in toTable(x) can be
strictly greater than the number of links in the map.

nrow(x) is equivalent to (but more efficient than) nrow(toTable(x)).

ncol(x) is equivalent to (but more efficient than) ncol(toTable(x)).

colnames(x) is equivalent to (but more efficient than) colnames(toTable(x)). Columns
are named accordingly to the names of the SQL columns where the data are coming from. An
important consequence of this that they are not necessarily unique.

colmetanames(x) returns the metanames for the column of x that are not right attributes. Valid
column metanames are "Lkeyname", "Rkeyname" and "tagname".

Lkeyname, Rkeyname, tagname and Rattribnames return the name of the column (or
columns) containing the left keys, the right keys, the tags and the right attributes, respectively.

Like toTable(x), links(x) turns x into a data frame but the right attributes (if any) are
dropped. Note that dropping the right attributes produces a data frame that has eventually less
columns than toTable(x) and also eventually less rows because now exactly 1 row is needed to
represent 1 link.

count.links(x) is equivalent to (but more efficient than) nrow(links(x)).

nhit(x) returns a named integer vector indicating the number of "hits" for each key in x i.e. the
number of links that start from each key.

Value

A data frame for toTable and links.

A single integer for nrow, ncol and count.links.

A character vector for colnames, colmetanames and Rattribnames.

A character string for Lkeyname, Rkeyname and tagname.

A named integer vector for nhit.

Author(s)

H. Pages

See Also

Bimap, BimapFormatting, AnnDbBimap-envirAPI

createSimpleBimap 19

Examples

library(GO.db)
x <- GOSYNONYM
x
toTable(x)[1:4,]
toTable(x["GO:0007322"])
links(x)[1:4,]
links(x["GO:0007322"])

nrow(x)
ncol(x)
dim(x)
colnames(x)
colmetanames(x)
Lkeyname(x)
Rkeyname(x)
tagname(x)
Rattribnames(x)

links(x)[1:4,]
count.links(x)

y <- GOBPCHILDREN
nhy <- nhit(y) # 'nhy' is a named integer vector
identical(names(nhy), keys(y)) # TRUE
table(nhy)
sum(nhy == 0) # number of GO IDs with no children
names(nhy)[nhy == max(nhy)] # the GO ID(s) with the most direct children

Some sanity check
sum(nhy) == count.links(y) # TRUE

Changing the right attributes of the GOSYNONYM map (advanced
users only)
class(x) # GOTermsAnnDbBimap
as.list(x)[1:3]
colnames(x)
colmetanames(x)
tagname(x) # untagged map
Rattribnames(x)
Rattribnames(x) <- Rattribnames(x)[3:1]
colnames(x)
class(x) # AnnDbBimap
as.list(x)[1:3]

createSimpleBimap Creates a simple Bimap from a SQLite database in an situation that is
external to AnnotationDbi

Description

This function allows users to easily make a simple Bimap object for extra tables etc that they may
wish to add to their annotation packages. For most Bimaps, their definition is stored inside of
AnnotationDbi. The addition of this function is to help ensure that this does not become a limitation,

20 getProbeData_1lq

by allowing simple extra Bimaps to easily be defined external to AnnotationDbi. Usually, this
will be done in the zzz.R source file of a package so that these extra mappings can be seemlessly
integrated with the rest of the package. For now, this function assumes that users will want to use
data from just one table.

Usage

createSimpleBimap(tablename, Lcolname, Rcolname, datacache, objName,
objTarget)

Arguments

tablename The name of the database table to grab the mapping information from.

Lcolname The field name from the database table. These will become the Lkeys in the
final mapping.

Rcolname The field name from the database table. These will become the Rkeys in the
final mapping.

datacache The datacache object should already exist for every standard Annotation pack-
age. It is not exported though, so you will have to access it with ::: . It is needed
to provide the connection information to the function.

objName This is the name of the mapping.

objTarget This is the name of the thing the mapping goes with. For most uses, this will
mean the package name that the mapping belongs with.

Examples

##You simply have to call this function to create a new mapping. For
##example, you could have created a mapping between the gene_name and
##the symbols fields from the gene_info table contained in the hgu95av2
##package by doing this:
library(hgu95av2.db)
hgu95av2NAMESYMBOL <- createSimpleBimap("gene_info",

"gene_name",
"symbol",
hgu95av2.db:::datacache,
"NAMESYMBOL",
"hgu95av2.db")

getProbeData_1lq Read a 1lq file for an Affymetrix genechip

Description

Read a 1lq file for an Affymetrix genechip

Usage

getProbeData_1lq(arraytype, datafile, pkgname = NULL)

getProbeDataAffy 21

Arguments

arraytype Character. Array type (e.g. ’Scerevisiaetiling)

datafile Character. The filename of the input data file. If omitted a default name is
constructed from arraytype (see this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parame-
ter pkgname if it was specified; otherwise, the name is constructed from the
parameter arraytype.

See Also

makeProbePackage

Examples

makeProbePackage(
arraytype = "Scerevisiaetiling",
maintainer= "Wolfgang Huber <huber@ebi.ac.uk>",
version = "1.1.0",
datafile = "S.cerevisiae_tiling.1lq",
importfun = "getProbeData_1lq")

getProbeDataAffy Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

getProbeDataAffy(arraytype, datafile, pkgname = NULL, comparewithcdf = TRUE)

22 GOFrame

Arguments

arraytype Character. Array type (e.g. ’HG-U133A’)

datafile Character with the filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.
comparewithcdf

Logical. If TRUE, run a consistency check against a CDF package of the same
name (what used to be Laurent’s "extraparanoia".)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names ’Probe X’,
’Probe Y’, ’Probe Sequence’, and ’Probe.Set.Name’. See the vignette for an exam-
ple.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parame-
ter pkgname if it was specified; otherwise, the name is constructed from the
parameter arraytype.

See Also

makeProbePackage

Examples

Please refer to the vignette

GOFrame GOFrame and GOAllFrame objects

Description

These objects each contain a data frame which is required to be composed of 3 columns. The 1st
column are GO IDs. The second are evidence codes and the 3rd are the gene IDs that match to
the GO IDs using those evidence codes. There is also a slot for the organism that these anotations
pertain to.

GOTerms-class 23

Details

The GOAllFrame object can only be generated from a GOFrame object and its contructor method
does this automatically from a GOFrame argument. The purpose of these objects is to create a safe
way for annotation data about GO from non-traditional sources to be used for analysis packages
like GSEABase and eventually GOstats.

Examples

Make up an example
genes = c(1,10,100)
evi = c("ND","IEA","IDA")
GOIds = c("GO:0008150","GO:0008152","GO:0001666")
frameData = data.frame(cbind(GOIds,evi,genes))

library(AnnotationDbi)
frame=GOFrame(frameData,organism="Homo sapiens")
allFrame=GOAllFrame(frame)

getGOFrameData(allFrame)

GOTerms-class Class "GOTerms"

Description

A class to represent Gene Ontology nodes

Objects from the Class

Objects can be created by calls of the form GOTerms(GOId, term, ontology, definition,
synonym, secondary). GOId, term, and ontology are required.

Slots

GOID: Object of class "character" A character string for the GO id of a primary node.

Term: Object of class "character" A character string that defines the role of gene product
corresponding to the primary GO id.

Ontology: Object of class "character" Gene Ontology category. Can be MF - molecular
function, CC - cellular component, or BP - biological process.

Definition: Object of class "character" Further definition of the ontology of the primary
GO id.

Synonym: Object of class "character" other ontology terms that are considered to be syn-
onymous to the primary term attached to the GO id (e.g. "type I programmed cell death" is
a synonym of "apoptosis"). Synonymous here can mean that the synonym is an exact syn-
onym of the primary term, is related to the primary term, is broader than the primary term, is
more precise than the primary term, or name is related to the term, but is not exact, broader or
narrower.

Secondary: Object of class "character" GO ids that are secondary to the primary GO id
as results of merging GO terms so that One GO id becomes the primary GO id and the rest
become the secondary.

24 inpIDMapper

Methods

GOID signature(object = "GOTerms"): The get method for slot GOID.
Term signature(object = "GOTerms"): The get method for slot Term.
Ontology signature(object = "GOTerms"): The get method for slot Ontology.
Definition signature(object = "GOTerms"): The get method for slot Definition.
Synonym signature(object = "GOTerms"): The get method for slot Synonym.
Secondary signature(object = "GOTerms"): The get method for slot Secondary.
show signature(x = "GOTerms"): The method for pretty print.

Note

GOTerms objects are used to represent primary GO nodes in the SQLite-based annotation data
package GO.db

References

http://www.geneontology.org/

Examples

gonode <- new("GOTerms", GOID="GO:1234567", Term="Test", Ontology="MF",
Definition="just for testing")

GOID(gonode)
Term(gonode)
Ontology(gonode)

##Or you can just use these methods on a GOTermsAnnDbBimap
Not run: ##I want to show an ex., but don't want to require GO.db

require(GO.db)
FirstTenGOBimap <- GOTERM[1:10] ##grab the 1st ten
Term(FirstTenGOBimap)

##Or you can just use GO IDs directly
ids = keys(FirstTenGOBimap)
Term(ids)

End(Not run)

inpIDMapper Convenience functions for mapping IDs through an appropriate set of
annotation packages

Description

These are a set of convenience functions that attempt to take a list of IDs along with some addional
information about what those IDs are, what type of ID you would like them to be, as well as some
information about what species they are from and what species you would like them to be from and
then attempts to the simplest possible conversion using the organism and possible inparanoid anno-
tation packages. By default, this function will drop ambiguous matches from the results. Please see
the details section for more information about the parameters that can affect this. If a more com-
plex treatment of how to handle multiple matches is required, then it is likely that a less convenient
approach will be necessary.

http://www.geneontology.org/

inpIDMapper 25

Usage

inpIDMapper(ids, srcSpecies, destSpecies, srcIDType="UNIPROT",
destIDType="EG", keepMultGeneMatches=FALSE, keepMultProtMatches=FALSE,
keepMultDestIDMatches = TRUE)

intraIDMapper(ids, species, srcIDType="UNIPROT", destIDType="EG",
keepMultGeneMatches=FALSE)

idConverter(ids, srcSpecies, destSpecies, srcIDType="UNIPROT",
destIDType="EG", keepMultGeneMatches=FALSE, keepMultProtMatches=FALSE,
keepMultDestIDMatches = TRUE)

Arguments

ids a list or vector of original IDs to match

srcSpecies The original source species in in paranoid format. In other words, the 3 letters
of the genus followed by 2 letters of the species in all caps. Ie. ’HOMSA’ is for
Homo sapiens etc.

destSpecies the destination species in inparanoid format

species the species involved

srcIDType The source ID type written exactly as it would be used in a mapping name for
an eg package. So for example, ’UNIPROT’ is how the uniprot mappings are
always written, so we keep that convention here.

destIDType the destination ID, written the same way as you would write the srcIDType. By
default this is set to "EG" for entrez gene IDs

keepMultGeneMatches
Do you want to try and keep the 1st ID in those ambiguous cases where more
than one protein is suggested? (You probably want to filter them out - hence the
default is FALSE)

keepMultProtMatches
Do you want to try and keep the 1st ID in those ambiguous cases where more
than one protein is suggested? (default = FALSE)

keepMultDestIDMatches
If you have mapped to a destination ID OTHER than an entrez gene ID, then it
is possible that there may be multiple answers. Do you want to keep all of these
or only return the 1st one? (default = TRUE)

Details

inpIDMapper - This is a convenience function for getting an ID from one species mapped to an ID
type of your choice from another organism of your choice. The only mappings used to do this are the
mappings that are scored as 100 according to the inparanoid algorithm. This function automatically
tries to join IDs by using FIVE different mappings in the sequence that follows:

1) initial IDs -> src organism Entrez Gene IDs 2) src organism Entrez Gene IDs -> sre organism
Inparanoid ID 3) src organism Inparanoid ID -> dest organism Inparanoid ID 4) dest organism
Inparanoid ID -> dest organism Entrez Gene ID 5) dest organism Entrez Gene ID -> final destination
organism ID

You can simplify this mapping as a series of steps like this:

srcIDs —> srcEGs —> srcInp —> destInp —> destEGs —> destIDs (1) (2) (3) (4) (5)

26 inpIDMapper

There are two steps in this process where multiple mappings can really interfere with getting a clear
answer. It’s no coincidence that these are also adjacent to the two places where we have to tie the
identity to a single gene for each organism. When this happens, any ambiguity is confounding.
Preceding step \#2, it is critical that we only have ONE entrez gene ID per initial ID, and the
parameter keepMultGeneMatches can be used to toggle whether to drop any ambiguous matches
(the default) or to keep the 1st one in the hope of getting an additional hit. A similar thing is done
preceding step \#4, where we have to be sure that the protein IDs we are getting back have all
mapped to only one gene. We allow you to use the keepMultProtMatches parameter to make the
same kind of decision as in step \#2, again, the default is to drop anything that is ambiguous.

intraIDMapper - This is a convenience function to map within an organism and so it has a much
simpler job to do. It will either map through one mapping or two depending whether the source ID
or destination ID is a central ID for the relevant organism package. If the answer is neither, then
two mappings will be needed.

idConverter - This is mostly for convenient usage of these functions by developers. It is just a
wrapper function that can pass along all the parameters to the appropriate function (intraIDMapper
or inpIDMapper). It decides which function to call based on the source and destination organism.
The disadvantage to using this function all the time is just that more of the parameters have to be
filled out each time.

Value

a list where the names of each element are the elements of the original list you passed in, and the
values are the matching results. Elements that do not have a match are not returned. If you want
things to align you can do some bookeeping.

Author(s)

Marc Carlson

Examples

Not run:
This has to be in a dontrun block because otherwise I would have to
expand the DEPENDS field for AnnotationDbi
library("org.Hs.eg.db")
library("org.Mm.eg.db")
library("org.Sc.eg.db")
library("hom.Hs.inp.db")
library("hom.Mm.inp.db")
library("hom.Sc.inp.db")

##Some IDs just for the example
library("org.Hs.eg.db")
ids = as.list(org.Hs.egUNIPROT)[10000:10500] ##get some ragged IDs
Get entrez gene IDs (default) for uniprot IDs mapping from human to mouse.
MouseEGs = inpIDMapper(ids, "HOMSA", "MUSMU")
##Get yeast uniprot IDs in exchange for uniprot IDs from human
YeastUPs = inpIDMapper(ids, "HOMSA", "SACCE", destIDType="UNIPROT")
##Get yeast uniprot IDs but only return one ID per initial ID
YeastUPSingles = inpIDMapper(ids, "HOMSA", "SACCE", destIDType="UNIPROT", keepMultDestIDMatches = FALSE)

##Test out the intraIDMapper function:
HumanEGs = intraIDMapper(ids, species="HOMSA", srcIDType="UNIPROT",
destIDType="EG")

KEGGFrame 27

HumanPATHs = intraIDMapper(ids, species="HOMSA", srcIDType="UNIPROT",
destIDType="PATH")

##Test out the wrapper function
MousePATHs = idConverter(MouseEGs, srcSpecies="MUSMU", destSpecies="MUSMU",
srcIDType="EG", destIDType="PATH")
##Convert from Yeast uniprot IDs to Human entrez gene IDs.
HumanEGs = idConverter(YeastUPSingles, "SACCE", "HOMSA")

End(Not run)

KEGGFrame KEGGFrame objects

Description

These objects each contain a data frame which is required to be composed of 2 columns. The 1st
column are KEGG IDs. The second are the gene IDs that match to the KEGG IDs. There is also
a slot for the organism that these anotations pertain to. getKEGGFrameData is just an accessor
method and returns the data.frame contained in the KEGGFrame object and is mostly used by other
code internally.

Details

The purpose of these objects is to create a safe way for annotation data about KEGG from non-
traditional sources to be used for analysis packages like GSEABase and eventually Category.

Examples

Make up an example
genes = c(2,9,9,10)
KEGGIds = c("04610","00232","00983","00232")
frameData = data.frame(cbind(KEGGIds,genes))

library(AnnotationDbi)
frame=KEGGFrame(frameData,organism="Homo sapiens")

getKEGGFrameData(frame)

make_eg_to_go_map Create GO to Entrez Gene maps for chip-based packages

Description

Create a new map object mapping Entrez ID to GO (or vice versa) given a chip annotation data
package.

This is a temporary solution until a more general pluggable map solution comes online.

Usage

make_eg_to_go_map(chip)

28 makeProbePackage

Arguments

chip The name of the annotation data package.

Value

Either a Go3AnnDbMap or a RevGo3AnnDbMap.

Author(s)

Seth Falcon and Herve Pages

Examples

library("hgu95av2.db")

eg2go = make_eg_to_go_map("hgu95av2.db")
sample(eg2go, 2)

go2eg = make_go_to_eg_map("hgu95av2.db")
sample(go2eg, 2)

makeProbePackage Make a package with probe sequence related data for microarrays

Description

Make a package with probe sequence related data for microarrays

Usage

makeProbePackage(arraytype,
importfun = "getProbeDataAffy",
maintainer,
version,
species,
pkgname = NULL,
outdir = ".",
force = FALSE, quiet = FALSE,
check = TRUE, build = TRUE, unlink = TRUE, ...)

Arguments

arraytype Character. Name of array type (typically a vendor’s name like "HG-U133A").

importfun Character. Name of a function that can read the probe sequence data e.g. from a
file. See getProbeDataAffy for an example.

maintainer Character. Name and email address of the maintainer.

version Character. Version number for the package.

species Character. Species name in the format Genus_species (e.g., Homo_sapiens)

pkgname Character. Name of the package. If missing, a name is created from arraytype.

print.probetable 29

outdir Character. Path where the package is to be written.

force Logical. If TRUE overrides possible warnings

quiet Logical. If TRUE do not print statements on progress on the console

check Logical. If TRUE call R CMD check on the package

build Logical. If TRUE call R CMD build on the package

unlink Logical. If TRUE unlink (remove) the check directory (only relevant if check=TRUE)

... Further arguments that get passed along to importfun

Details

See vignette.

Important note for Windows users: Building and checking packages requires some tools outside
of R (e.g. a Perl interpreter). While these tools are standard with practically every Unix, they do
not come with MS-Windows and need to be installed separately on your computer. See http:
//www.murdoch-sutherland.com/Rtools. If you just want to build probe packages, you
will not need the compilers, and the "Windows help" stuff is optional.

Examples

filename <- system.file("extdata", "HG-U95Av2_probe_tab.gz",
package="AnnotationDbi")

outdir <- tempdir()
me <- "Wolfgang Huber <huber@ebi.ac.uk>"
makeProbePackage("HG-U95Av2",

datafile = gzfile(filename, open="r"),
outdir = outdir,
maintainer = me,
version = "0.0.1",
species = "Homo_sapiens",

check = FALSE,
force = TRUE)

dir(outdir)

print.probetable Print method for probetable objects

Description

Prints class(x), nrow(x) and ncol(x), but not the elements of x. The motivation for having this
method is that methods from the package base such as print.data.frame will try to print the
values of all elements of x, which can take inconveniently much time and screen space if x is large.

Usage

S3 method for class 'probetable':
print(x, ...)

Arguments

x an object of S3-class probetable.

... further arguments that get ignored.

http://www.murdoch-sutherland.com/Rtools
http://www.murdoch-sutherland.com/Rtools

30 makeDBPackage

See Also

print.data.frame

Examples

a = as.data.frame(matrix(runif(1e6), ncol=1e3))
class(a) = c("probetable", class(a))
print(a)
print(as.matrix(a[2:3, 4:6]))

makeDBPackage Creates a sqlite database, and then makes an annotation package with
it

Description

This function 1st creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced. All makeXXXXChip_DB functions REQUIRE that you
previously have installed the appropriate XXXX.db0 package. Call the function available.db0pkgs()
to see what your options are, and then install the appropriate package with biocLite().

Usage

makeDBPackage(schema, ...)

usage case with required arguments
makeDBPackage(schema, affy, prefix, fileName, baseMapType, version)

usage case with all arguments
makeDBPackage(schema, affy, prefix, fileName, otherSrc, chipMapSrc,
chipSrc, baseMapType, outputDir, version, manufacturer, chipName,
manufacturerUrl, author, maintainer)

Arguments

schema String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.db")

fileName The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

otherSrc The path and filenames to any other lists of IDs which might add information
about how a probe will map.

chipMapSrc The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

populateDB 31

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and
refseq IDs

outputDir Where you would like the output files to be placed.

version What is the version number for the desired package.

manufacturer Who made the chip being described.

chipName What is the name of the chip.

manufacturerUrl
URL for manufacturers website.

author List of authors involved in making the package.

maintainer List of package maintainers with email addresses for contact purposes.

... Just used so we can have a wrapper function. Ignore this argument.

Examples

Not run:
##Build the hgu95av2.db package
makeDBPackage("HUMANCHIP_DB",

affy = TRUE,
prefix = "hgu95av2",
fileName = "/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2_annot.csv.070824",
otherSrc = c(
EA="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2.EA.txt",
UMICH="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2_UMICH.txt"),

baseMapType = "gbNRef",
version = "1.0.0",
manufacturer = "Affymetrix",
chipName = "hgu95av2",
manufacturerUrl = "http://www.affymetrix.com")

End(Not run)

populateDB Populates an SQLite DB with and produces a schema definition

Description

Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

32 populateDB

Usage

populateDB(schema, ...)

usage case with required arguments
populateDB(schema, prefix, chipSrc, metaDataSrc)

usage case with all possible arguments
populateDB(schema, affy, prefix, fileName, chipMapSrc, chipSrc,
metaDataSrc, otherSrc, baseMapType, outputDir, printSchema)

Arguments

schema String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

affy Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

fileName The path and filename for the mapping file to be parsed. This can either be
an affy csv file or it can be a more classic file type. This is only needed when
making chip packages.

chipMapSrc The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

metaDataSrc Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.
If this is a custom package, then it must be a named vector with the following
fields:
metaDataSrc <- c(DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME="the chipName", MANUFACTURERURL="the manufacturerUrl")

otherSrc The path and filenames to any other lists of IDs which might add information
about how a probe will map.

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and
refseq IDs

outputDir Where you would like the output files to be placed.

printSchema Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).

... Just used so we can have a wrapper function. Ignore this argument.

wrapBaseDBPackages 33

Examples

Not run:
##Set up the metadata
my_metaDataSrc <- c(DBSCHEMA="the DB schema",

ORGANISM="the organism",
SPECIES="the species",
MANUFACTURER="the manufacturer",
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the org.Hs.eg sqlite:
populateDB("HUMAN_DB",

prefix="org.Hs.eg",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/annosrc/db/chipsrc_human.sqlite",
metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

##Builds hgu95av2.sqlite:
populateDB("HUMANCHIP_DB",

affy=TRUE,
prefix="hgu95av2",
fileName="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2.na27.annot.csv",
metaDataSrc=my_metaDataSrc,
baseMapType="gbNRef")

##Builds the ag.sqlite:
populateDB("ARABIDOPSISCHIP_DB",

affy=TRUE,
prefix="ag",
metaDataSrc=my_metaDataSrc)

##Builds yeast2.sqlite:
populateDB("YEASTCHIP_DB",

affy=TRUE,
prefix="yeast2",
fileName="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/yeast2/Yeast_2.na27.annot.csv",
metaDataSrc=metaDataSrc)

End(Not run)

wrapBaseDBPackages Wrap up all the Base Databases into Packages for distribution

Description

Creates extremely simple packages from the base database files for distribution. This is a conve-
nience function for wrapping up these packages in a consistent way each time.

Usage

wrapBaseDBPackages(dbPath, destDir, version)

34 toSQLStringSet

Arguments

dbPath dbPath is just the path to the location of the latest intermediate sqlite source files.
These files are then used to make base DB packages.

destDir destination path for the newly minted packages.

version version number to stamp onto these newly minted packages.

Examples

Not run:
##Make all of the intermediate DBs and place the new packages right here.
wrapBaseDBPackages(dbPath = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/",

destDir = ".")

End(Not run)

toSQLStringSet Convert a vector to a quoted string for use as a SQL value list

Description

Given a vector, this function returns a string with each element of the input coerced to character,
quoted, and separated by ",".

Usage

toSQLStringSet(names)

Arguments

names A vector of values to quote

Details

If names is a character vector with elements containing single quotes, these quotes will be doubled
so as to escape the quote in SQL.

Value

A character vector of length one that represents the input vector as a SQL value list. Each element
is single quoted and elements are comma separated.

Note

Do not use sQuote for generating SQL as that function is intended for display purposes only. In
some locales, sQuote will generate fancy quotes which will break your SQL.

Author(s)

Herve Pages

unlist2 35

Examples

toSQLStringSet(letters[1:4])
toSQLStringSet(c("'foo'", "ab'cd", "bar"))

unlist2 A replacement for unlist() that does not mangle the names

Description

unlist2 is a replacement for base::unlist() that does not mangle the names.

Usage

unlist2(x, recursive=TRUE, use.names=TRUE, what.names="inherited")

Arguments
x, recursive, use.names

See ?unlist.

what.names "inherited" or "full".

Details

Use this function if you don’t like the mangled names returned by the standard unlist function
from the base package. Using unlist with annotation data is dangerous and it is highly recom-
mended to use unlist2 instead.

Author(s)

Herve Pages

See Also

unlist

Examples

x <- list(A=c(b=-4, 2, b=7), B=3:-1, c(a=1, a=-2), C=list(c(2:-1, d=55), e=99))
unlist(x)
unlist2(x)

library(hgu95av2.db)
egids <- c("10", "100", "1000")
egids2pbids <- mget(egids, revmap(hgu95av2ENTREZID))
egids2pbids

unlist(egids2pbids) # 1001, 1002, 10001 and 10002 are not real
Entrez ids but are the result of unlist()
mangling the names!

unlist2(egids2pbids) # much cleaner! yes the names are not unique
but at least they are correct...

Index

∗Topic IO
getProbeData_1lq, 20
getProbeDataAffy, 21
makeProbePackage, 28

∗Topic classes
AnnDbObj-objects, 2
AnnDbPkg-maker, 5
Bimap, 14
GOFrame, 22
GOTerms-class, 23
KEGGFrame, 27

∗Topic interface
AnnDbBimap-envirAPI, 1
Bimap, 14
GOFrame, 22
KEGGFrame, 27

∗Topic manip
available.db0pkgs, 6
inpIDMapper, 24
toSQLStringSet, 34
unlist2, 35

∗Topic methods
AnnDbBimap-envirAPI, 1
AnnDbObj-objects, 2
AnnDbPkg-maker, 5
Bimap-direction, 7
Bimap-keys, 12
Bimap-toTable, 17
BimapFormatting, 11
GOTerms-class, 23
toggleProbes, 10

∗Topic print
print.probetable, 29

∗Topic utilities
AnnDbPkg-checker, 4
AnnDbPkg-maker, 5
createSimpleBimap, 19
getProbeData_1lq, 20
getProbeDataAffy, 21
makeDBPackage, 30
makeProbePackage, 28
populateDB, 31
toSQLStringSet, 34

unlist2, 35
wrapBaseDBPackages, 33

[,Bimap-method (Bimap-keys), 12
[[,AnnDbBimap-method

(AnnDbBimap-envirAPI), 1
$,AnnDbBimap-method

(AnnDbBimap-envirAPI), 1

AgiAnnDbMap (Bimap), 14
AgiAnnDbMap-class (Bimap), 14
AnnDbBimap, 1, 2, 8
AnnDbBimap (Bimap), 14
AnnDbBimap-envirAPI, 13
AnnDbBimap-class (Bimap), 14
AnnDbBimap-envirAPI, 1, 9, 11–13, 17,

18
AnnDbMap (Bimap), 14
AnnDbMap-class (Bimap), 14
AnnDbObj (AnnDbObj-objects), 2
AnnDbObj-class

(AnnDbObj-objects), 2
AnnDbObj-objects, 2
AnnDbPkg-checker, 4, 5
AnnDbPkg-maker, 4, 5
AnnDbPkgSeed (AnnDbPkg-maker), 5
AnnDbPkgSeed-class

(AnnDbPkg-maker), 5
as.character,AnnDbBimap-method

(BimapFormatting), 11
as.list (BimapFormatting), 11
as.list,AgiAnnDbMap-method

(BimapFormatting), 11
as.list,AnnDbBimap-method

(BimapFormatting), 11
as.list,Bimap-method

(BimapFormatting), 11
as.list,GoAnnDbBimap-method

(BimapFormatting), 11
as.list,GOTermsAnnDbBimap-method

(BimapFormatting), 11
as.list,IpiAnnDbMap-method

(BimapFormatting), 11
available.chipdbschemas

(available.db0pkgs), 6

36

INDEX 37

available.db0pkgs, 6
available.dbschemas

(available.db0pkgs), 6

Bimap, 2, 3, 7–13, 14, 17, 18
Bimap-class (Bimap), 14
Bimap-direction, 7, 11, 16, 17
Bimap-keys, 9, 11, 12, 16, 17
Bimap-toTable, 13, 16, 17, 17
BimapFormatting, 2, 9, 11, 11, 13, 17, 18

cat, 3
checkMAPCOUNTS

(AnnDbPkg-checker), 4
class:AgiAnnDbMap (Bimap), 14
class:AnnDbBimap (Bimap), 14
class:AnnDbMap (Bimap), 14
class:AnnDbObj

(AnnDbObj-objects), 2
class:AnnDbPkgSeed

(AnnDbPkg-maker), 5
class:Bimap (Bimap), 14
class:Go3AnnDbBimap (Bimap), 14
class:GOAllFrame (GOFrame), 22
class:GoAnnDbBimap (Bimap), 14
class:GOFrame (GOFrame), 22
class:GOTerms (GOTerms-class), 23
class:GOTermsAnnDbBimap (Bimap),

14
class:IpiAnnDbMap (Bimap), 14
class:KEGGFrame (KEGGFrame), 27
class:ProbeAnnDbBimap (Bimap), 14
class:ProbeAnnDbMap (Bimap), 14
class:ProbeGo3AnnDbBimap (Bimap),

14
class:ProbeIpiAnnDbMap (Bimap), 14
colmetanames (Bimap-toTable), 17
colmetanames,AnnDbBimap-method

(Bimap-toTable), 17
colmetanames,FlatBimap-method

(Bimap-toTable), 17
colnames (Bimap-toTable), 17
colnames,AnnDbBimap-method

(Bimap-toTable), 17
colnames,FlatBimap-method

(Bimap-toTable), 17
contents, 2
contents,Bimap-method

(AnnDbBimap-envirAPI), 1
count.links (Bimap-toTable), 17
count.links,Bimap-method

(Bimap-toTable), 17

count.links,Go3AnnDbBimap-method
(Bimap-toTable), 17

count.mappedkeys (Bimap-keys), 12
count.mappedkeys,ANY-method

(Bimap-keys), 12
count.mappedkeys,Bimap-method

(Bimap-keys), 12
count.mappedLkeys

(Bimap-direction), 7
count.mappedLkeys,AgiAnnDbMap-method

(Bimap-direction), 7
count.mappedLkeys,AnnDbBimap-method

(Bimap-direction), 7
count.mappedLkeys,Bimap-method

(Bimap-direction), 7
count.mappedLkeys,Go3AnnDbBimap-method

(Bimap-direction), 7
count.mappedRkeys

(Bimap-direction), 7
count.mappedRkeys,AnnDbBimap-method

(Bimap-direction), 7
count.mappedRkeys,AnnDbMap-method

(Bimap-direction), 7
count.mappedRkeys,Bimap-method

(Bimap-direction), 7
count.mappedRkeys,Go3AnnDbBimap-method

(Bimap-direction), 7
createPackage, 21, 22
createSimpleBimap, 19

dbconn (AnnDbObj-objects), 2
dbconn,AnnDbObj-method

(AnnDbObj-objects), 2
dbconn,environment-method

(AnnDbObj-objects), 2
dbConnect, 3
dbfile (AnnDbObj-objects), 2
dbfile,AnnDbObj-method

(AnnDbObj-objects), 2
dbfile,environment-method

(AnnDbObj-objects), 2
dbGetQuery, 3
dbInfo (AnnDbObj-objects), 2
dbInfo,AnnDbObj-method

(AnnDbObj-objects), 2
dbInfo,DBIConnection-method

(AnnDbObj-objects), 2
dbInfo,environment-method

(AnnDbObj-objects), 2
dbListFields, 3
dbListTables, 3
dbmeta (AnnDbObj-objects), 2

38 INDEX

dbmeta,AnnDbObj-method
(AnnDbObj-objects), 2

dbmeta,DBIConnection-method
(AnnDbObj-objects), 2

dbmeta,environment-method
(AnnDbObj-objects), 2

dbschema (AnnDbObj-objects), 2
dbschema,AnnDbObj-method

(AnnDbObj-objects), 2
dbschema,DBIConnection-method

(AnnDbObj-objects), 2
dbschema,environment-method

(AnnDbObj-objects), 2
Definition (GOTerms-class), 23
Definition,character-method

(GOTerms-class), 23
Definition,GOTerms-method

(GOTerms-class), 23
Definition,GOTermsAnnDbBimap-method

(GOTerms-class), 23
dim,Bimap-method (Bimap-toTable),

17
direction, 13
direction (Bimap-direction), 7
direction,AnnDbBimap-method

(Bimap-direction), 7
direction,FlatBimap-method

(Bimap-direction), 7
direction<- (Bimap-direction), 7
direction<-,AnnDbBimap-method

(Bimap-direction), 7
direction<-,AnnDbMap-method

(Bimap-direction), 7
direction<-,FlatBimap-method

(Bimap-direction), 7

eapply, 2
eapply (AnnDbBimap-envirAPI), 1
eapply,Bimap-method

(AnnDbBimap-envirAPI), 1
exists, 2
exists (AnnDbBimap-envirAPI), 1
exists,ANY,ANY,Bimap-method

(AnnDbBimap-envirAPI), 1
exists,ANY,Bimap,missing-method

(AnnDbBimap-envirAPI), 1

get, 2
get (AnnDbBimap-envirAPI), 1
get,ANY,AnnDbBimap,missing-method

(AnnDbBimap-envirAPI), 1
get,ANY,ANY,AnnDbBimap-method

(AnnDbBimap-envirAPI), 1

getBimapFilters (toggleProbes), 10
getBimapFilters,AnnDbBimap-method

(toggleProbes), 10
getGOFrameData (GOFrame), 22
getGOFrameData,GOAllFrame-method

(GOFrame), 22
getGOFrameData,GOFrame-method

(GOFrame), 22
getKEGGFrameData (KEGGFrame), 27
getKEGGFrameData,KEGGAllFrame-method

(KEGGFrame), 27
getKEGGFrameData,KEGGFrame-method

(KEGGFrame), 27
getProbeData_1lq, 20
getProbeDataAffy, 21, 28
Go3AnnDbBimap (Bimap), 14
Go3AnnDbBimap-class (Bimap), 14
GOAllFrame (GOFrame), 22
GOAllFrame,GOFrame-method

(GOFrame), 22
GOAllFrame-class (GOFrame), 22
GoAnnDbBimap (Bimap), 14
GoAnnDbBimap-class (Bimap), 14
GOFrame, 22
GOFrame,data.frame,character-method

(GOFrame), 22
GOFrame,data.frame,missing-method

(GOFrame), 22
GOFrame-class (GOFrame), 22
GOID (GOTerms-class), 23
GOID,character-method

(GOTerms-class), 23
GOID,GOTerms-method

(GOTerms-class), 23
GOID,GOTermsAnnDbBimap-method

(GOTerms-class), 23
GOTerms (GOTerms-class), 23
GOTerms-class, 23
GOTermsAnnDbBimap (Bimap), 14
GOTermsAnnDbBimap-class (Bimap),

14

hasMultiProbes (toggleProbes), 10
hasMultiProbes,ProbeAnnDbBimap-method

(toggleProbes), 10
hasMultiProbes,ProbeAnnDbMap-method

(toggleProbes), 10
hasMultiProbes,ProbeGo3AnnDbBimap-method

(toggleProbes), 10
hasMultiProbes,ProbeIpiAnnDbMap-method

(toggleProbes), 10
hasSingleProbes (toggleProbes), 10

INDEX 39

hasSingleProbes,ProbeAnnDbBimap-method
(toggleProbes), 10

hasSingleProbes,ProbeAnnDbMap-method
(toggleProbes), 10

hasSingleProbes,ProbeGo3AnnDbBimap-method
(toggleProbes), 10

hasSingleProbes,ProbeIpiAnnDbMap-method
(toggleProbes), 10

head, 17
head (Bimap-toTable), 17
head,FlatBimap-method

(Bimap-toTable), 17

idConverter (inpIDMapper), 24
initialize,GOTerms-method

(GOTerms-class), 23
inpIDMapper, 24
intraIDMapper (inpIDMapper), 24
IpiAnnDbMap (Bimap), 14
IpiAnnDbMap-class (Bimap), 14
isNA (Bimap-keys), 12
isNA,ANY-method (Bimap-keys), 12
isNA,Bimap-method (Bimap-keys), 12
isNA,environment-method

(Bimap-keys), 12

KEGGFrame, 27
KEGGFrame,data.frame,character-method

(KEGGFrame), 27
KEGGFrame,data.frame,missing-method

(KEGGFrame), 27
KEGGFrame-class (KEGGFrame), 27
keyname (Bimap-toTable), 17
keyname,Bimap-method

(Bimap-toTable), 17
keys, 8
keys (Bimap-keys), 12
keys,Bimap-method (Bimap-keys), 12
keys<- (Bimap-keys), 12
keys<-,Bimap-method (Bimap-keys),

12

length,Bimap-method (Bimap-keys),
12

links (Bimap-toTable), 17
links,AnnDbBimap-method

(Bimap-toTable), 17
links,FlatBimap-method

(Bimap-toTable), 17
links,Go3AnnDbBimap-method

(Bimap-toTable), 17
Lkeyname (Bimap-toTable), 17

Lkeyname,AnnDbBimap-method
(Bimap-toTable), 17

Lkeyname,Bimap-method
(Bimap-toTable), 17

Lkeys (Bimap-direction), 7
Lkeys,AnnDbBimap-method

(Bimap-direction), 7
Lkeys,FlatBimap-method

(Bimap-direction), 7
Lkeys,ProbeAnnDbBimap-method

(Bimap-direction), 7
Lkeys,ProbeAnnDbMap-method

(Bimap-direction), 7
Lkeys,ProbeGo3AnnDbBimap-method

(Bimap-direction), 7
Lkeys,ProbeIpiAnnDbMap-method

(Bimap-direction), 7
Lkeys<- (Bimap-direction), 7
Lkeys<-,AnnDbBimap-method

(Bimap-direction), 7
Lkeys<-,FlatBimap-method

(Bimap-direction), 7
Llength (Bimap-direction), 7
Llength,AnnDbBimap-method

(Bimap-direction), 7
Llength,Bimap-method

(Bimap-direction), 7
Llength,ProbeAnnDbBimap-method

(Bimap-direction), 7
Llength,ProbeAnnDbMap-method

(Bimap-direction), 7
Llength,ProbeGo3AnnDbBimap-method

(Bimap-direction), 7
Llength,ProbeIpiAnnDbMap-method

(Bimap-direction), 7
loadAnnDbPkgIndex

(AnnDbPkg-maker), 5
ls, 2
ls (AnnDbBimap-envirAPI), 1
ls,Bimap-method

(AnnDbBimap-envirAPI), 1

make_eg_to_go_map, 27
make_go_to_eg_map

(make_eg_to_go_map), 27
makeAnnDbPkg (AnnDbPkg-maker), 5
makeAnnDbPkg,AnnDbPkgSeed-method

(AnnDbPkg-maker), 5
makeAnnDbPkg,character-method

(AnnDbPkg-maker), 5
makeAnnDbPkg,list-method

(AnnDbPkg-maker), 5

40 INDEX

makeARABIDOPSISCHIP_DB
(makeDBPackage), 30

makeBOVINECHIP_DB
(makeDBPackage), 30

makeCANINECHIP_DB
(makeDBPackage), 30

makeCHICKENCHIP_DB
(makeDBPackage), 30

makeDBPackage, 30
makeECOLICHIP_DB (makeDBPackage),

30
makeFLYCHIP_DB (makeDBPackage), 30
makeHUMANCHIP_DB (makeDBPackage),

30
makeMOUSECHIP_DB (makeDBPackage),

30
makePIGCHIP_DB (makeDBPackage), 30
makeProbePackage, 21, 22, 28
makeRATCHIP_DB (makeDBPackage), 30
makeWORMCHIP_DB (makeDBPackage),

30
makeYEASTCHIP_DB (makeDBPackage),

30
makeZEBRAFISHCHIP_DB

(makeDBPackage), 30
mappedkeys (Bimap-keys), 12
mappedkeys,Bimap-method

(Bimap-keys), 12
mappedkeys,environment-method

(Bimap-keys), 12
mappedkeys,vector-method

(Bimap-keys), 12
mappedLkeys (Bimap-direction), 7
mappedLkeys,AgiAnnDbMap-method

(Bimap-direction), 7
mappedLkeys,AnnDbBimap-method

(Bimap-direction), 7
mappedLkeys,FlatBimap-method

(Bimap-direction), 7
mappedLkeys,Go3AnnDbBimap-method

(Bimap-direction), 7
mappedRkeys (Bimap-direction), 7
mappedRkeys,AnnDbBimap-method

(Bimap-direction), 7
mappedRkeys,AnnDbMap-method

(Bimap-direction), 7
mappedRkeys,FlatBimap-method

(Bimap-direction), 7
mappedRkeys,Go3AnnDbBimap-method

(Bimap-direction), 7
mget, 2
mget (AnnDbBimap-envirAPI), 1

mget,AnnDbBimap-method
(AnnDbBimap-envirAPI), 1

mget,ANY,AnnDbBimap-method
(AnnDbBimap-envirAPI), 1

ncol (Bimap-toTable), 17
ncol,Bimap-method

(Bimap-toTable), 17
nhit, 9, 11
nhit (Bimap-toTable), 17
nhit,Bimap-method

(Bimap-toTable), 17
nhit,environment-method

(Bimap-toTable), 17
nhit,list-method (Bimap-toTable),

17
nrow (Bimap-toTable), 17
nrow,AnnDbBimap-method

(Bimap-toTable), 17
nrow,AnnDbTable-method

(Bimap-toTable), 17
nrow,FlatBimap-method

(Bimap-toTable), 17
nrow,Go3AnnDbBimap-method

(Bimap-toTable), 17

Ontology (GOTerms-class), 23
Ontology,character-method

(GOTerms-class), 23
Ontology,GOTerms-method

(GOTerms-class), 23
Ontology,GOTermsAnnDbBimap-method

(GOTerms-class), 23

popBOVINECHIPDB (populateDB), 31
popBOVINEDB (populateDB), 31
popCANINECHIPDB (populateDB), 31
popCANINEDB (populateDB), 31
popCHICKENCHIPDB (populateDB), 31
popCHICKENDB (populateDB), 31
popECOLICHIPDB (populateDB), 31
popECOLIDB (populateDB), 31
popFLYCHIPDB (populateDB), 31
popFLYDB (populateDB), 31
popHUMANCHIPDB (populateDB), 31
popHUMANDB (populateDB), 31
popMALARIADB (populateDB), 31
popMOUSECHIPDB (populateDB), 31
popMOUSEDB (populateDB), 31
popPIGCHIPDB (populateDB), 31
popPIGDB (populateDB), 31
popRATCHIPDB (populateDB), 31
popRATDB (populateDB), 31

INDEX 41

populateDB, 31
popWORMCHIPDB (populateDB), 31
popWORMDB (populateDB), 31
popYEASTDB (populateDB), 31
popYEASTNCBIDB (populateDB), 31
popZEBRAFISHCHIPDB (populateDB),

31
popZEBRAFISHDB (populateDB), 31
print.data.frame, 29, 30
print.probetable, 29
ProbeAnnDbBimap (Bimap), 14
ProbeAnnDbBimap-class (Bimap), 14
ProbeAnnDbMap (Bimap), 14
ProbeAnnDbMap-class (Bimap), 14
ProbeGo3AnnDbBimap (Bimap), 14
ProbeGo3AnnDbBimap-class (Bimap),

14
ProbeIpiAnnDbMap (Bimap), 14
ProbeIpiAnnDbMap-class (Bimap), 14

Rattribnames (Bimap-toTable), 17
Rattribnames,AnnDbBimap-method

(Bimap-toTable), 17
Rattribnames,Bimap-method

(Bimap-toTable), 17
Rattribnames<- (Bimap-toTable), 17
Rattribnames<-,AnnDbBimap-method

(Bimap-toTable), 17
Rattribnames<-,FlatBimap-method

(Bimap-toTable), 17
Rattribnames<-,Go3AnnDbBimap-method

(Bimap-toTable), 17
revmap (Bimap-direction), 7
revmap,AnnDbBimap-method

(Bimap-direction), 7
revmap,Bimap-method

(Bimap-direction), 7
revmap,environment-method

(Bimap-direction), 7
revmap,list-method

(Bimap-direction), 7
Rkeyname (Bimap-toTable), 17
Rkeyname,AnnDbBimap-method

(Bimap-toTable), 17
Rkeyname,Bimap-method

(Bimap-toTable), 17
Rkeys (Bimap-direction), 7
Rkeys,AnnDbBimap-method

(Bimap-direction), 7
Rkeys,AnnDbMap-method

(Bimap-direction), 7
Rkeys,FlatBimap-method

(Bimap-direction), 7

Rkeys,Go3AnnDbBimap-method
(Bimap-direction), 7

Rkeys<- (Bimap-direction), 7
Rkeys<-,AnnDbBimap-method

(Bimap-direction), 7
Rkeys<-,FlatBimap-method

(Bimap-direction), 7
Rlength (Bimap-direction), 7
Rlength,AnnDbBimap-method

(Bimap-direction), 7
Rlength,AnnDbMap-method

(Bimap-direction), 7
Rlength,Bimap-method

(Bimap-direction), 7
Rlength,Go3AnnDbBimap-method

(Bimap-direction), 7

sample, 2
sample (AnnDbBimap-envirAPI), 1
sample,Bimap-method

(AnnDbBimap-envirAPI), 1
sample,environment-method

(AnnDbBimap-envirAPI), 1
Secondary (GOTerms-class), 23
Secondary,character-method

(GOTerms-class), 23
Secondary,GOTerms-method

(GOTerms-class), 23
Secondary,GOTermsAnnDbBimap-method

(GOTerms-class), 23
setInpBimapFilter (toggleProbes),

10
setInpBimapFilter,InpAnnDbBimap-method

(toggleProbes), 10
show,AnnDbBimap-method (Bimap), 14
show,AnnDbTable-method

(Bimap-keys), 12
show,FlatBimap-method (Bimap), 14
show,GOTerms-method

(GOTerms-class), 23
subset (Bimap-direction), 7
subset,AnnDbBimap-method

(Bimap-direction), 7
subset,Bimap-method

(Bimap-direction), 7
summary,AnnDbBimap-method

(Bimap), 14
summary,Bimap-method (Bimap), 14
Synonym (GOTerms-class), 23
Synonym,character-method

(GOTerms-class), 23
Synonym,GOTerms-method

(GOTerms-class), 23

42 INDEX

Synonym,GOTermsAnnDbBimap-method
(GOTerms-class), 23

tagname (Bimap-toTable), 17
tagname,AnnDbBimap-method

(Bimap-toTable), 17
tagname,Bimap-method

(Bimap-toTable), 17
tail, 17
tail (Bimap-toTable), 17
tail,FlatBimap-method

(Bimap-toTable), 17
Term (GOTerms-class), 23
Term,character-method

(GOTerms-class), 23
Term,GOTerms-method

(GOTerms-class), 23
Term,GOTermsAnnDbBimap-method

(GOTerms-class), 23
toggleProbes, 10
toggleProbes,ProbeAnnDbBimap-method

(toggleProbes), 10
toggleProbes,ProbeAnnDbMap-method

(toggleProbes), 10
toggleProbes,ProbeGo3AnnDbBimap-method

(toggleProbes), 10
toggleProbes,ProbeIpiAnnDbMap-method

(toggleProbes), 10
toSQLStringSet, 34
toTable (Bimap-toTable), 17
toTable,AnnDbBimap-method

(Bimap-toTable), 17
toTable,FlatBimap-method

(Bimap-toTable), 17

unlist, 35
unlist2, 35

wrapBaseDBPackages, 33

	AnnDbBimap-envirAPI
	AnnDbObj-objects
	AnnDbPkg-checker
	AnnDbPkg-maker
	available.db0pkgs
	Bimap-direction
	toggleProbes
	BimapFormatting
	Bimap-keys
	Bimap
	Bimap-toTable
	createSimpleBimap
	getProbeData_1lq
	getProbeDataAffy
	GOFrame
	GOTerms-class
	inpIDMapper
	KEGGFrame
	make_eg_to_go_map
	makeProbePackage
	print.probetable
	makeDBPackage
	populateDB
	wrapBaseDBPackages
	toSQLStringSet
	unlist2
	Index

