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1 Getting started

VSN is a method to preprocess microarray inten-
sity data. This can be as simple as

> require("vsn")

> data("kidney")

> xnorm = justvsn(kidney)

where kidney is an ExpressionSet object with
unnormalised data and xnorm the resulting Ex-
pressionSet with calibrated and glog2-transformed
data.

> M = exprs(xnorm)[,1] - exprs(xnorm)[,2]

produces the vector of generalised log-ratios be-
tween the data in the first and second column.

VSN is a model-based method, and the more ex-
plicit way of doing the above is

> fit = vsn2(kidney)

> ynorm = predict(fit, kidney)

where fit is an object of class vsn that contains the
fitted calibration and transformation parameters,
and the method predict applies the fit to the data.
The two-step protocol is useful when you want to
fit the parameters on a subset of the data, e. g. a set
of control or spike-in features, and then apply the
model to the complete set of data (see Section 7 for
details). Furthermore, it allows further inspection
of the fit object, e. g. for the purpose of quality
assessment.

Besides ExpressionSets, there are also justvsn

methods for AffyBatch objects from the affy pack-
age and RGList objects from the limma package.
They are described in this vignette.

The so-called glog2 (short for generalised loga-
rithm) is a function that is like the logarithm (base
2) for large values (large compared to the ampli-
tude of the background noise), but is less steep
for smaller values. Differences between the trans-
formed values are the generalised log-ratios. These
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Figure 1: Scatterplots of the kidney example data, which were obtained from a two-colour cDNA array by
quantitating spots and subtracting a local background estimate. a) unnormalised and log2-transformed.
b) normalised and transformed with VSN, Panel b shows the data from the complete set of 8704 spots
on the array, panel a only the 7806 spots for which both red and green net intensities were greater than
0. Those spots which are missing in panel a are coloured in orange in panel b.

are shrinkage estimators of the logarithm of the
fold change. The usual log-ratio is another example
for an estimator1 of log fold change. There is also
a close relationship between background correction
of the intensities and the variance properties of the
different estimators. Please see Section 12 for more
explanation of these issues.

How does VSN work? There are two compo-
nents: First, an affine transformation whose aim is
to calibrate systematic experimental factors such
as labelling efficiency or detector sensitivity. Sec-
ond, a glog2 transformation whose aim is variance
stabilisation.

An affine transformation is simply a shifting and
scaling of the data, i. e. a mapping of the form
x 7→ (x − a)/s with offset a and scaling factor s.
By default, a different offset and a different scaling
factor are used for each column, but the same for

1In statistics, the term estimator is used to denote an
algorithm that calculates a value from measured data. This
value is intended to correspond to the true value of a param-
eter of the underlying process that generated the data. De-
pending on the amount of the available data and the quality
of the estimator, the intention may be more or less satisfied.

all rows within a column. There are two parame-
ters of the function vsn2 to control this behaviour:
With the parameter strata, you can ask vsn2 to
choose different offset and scaling factors for differ-
ent groups (“strata”) of rows. These strata could,
for example, correspond to sectors on the array2.
With the parameter calib, you can ask vsn2 to
choose the same offset and scaling factor through-
out3. This can be useful, for example, if the cali-
bration has already been done by other means, e. g.
quantile normalisation.

Note that VSN’s variance stabilisation only ad-
dresses the dependence of the variance on the mean
intensity. There may be other factors influencing
the variance, such as gene-inherent properties or
changes of the tightness of transcriptional control
in different conditions. These need to be addressed
by other methods.

2See Section 5.2.
3See Section 10.
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Figure 2: Standard deviation versus rank of the mean, and the mean, respectively.

2 Running VSN on data from a
single two-colour array

The dataset kidney contains example data from
a spotted cDNA two-colour microarray on which
cDNA from two adjacent tissue samples of the
same kidney were hybridised, one labeled in green
(Cy3), one in red (Cy5). The two columns of the
matrix exprs(kidney) contain the green and red
intensities, respectively. A local background esti-
mate4 was calculated by the image analysis soft-
ware and subtracted, hence some of the intensities
in kidney are close to zero or negative. In Figure 1
on page 2 you can see the scatterplot of the cali-
brated and transformed data. For comparison, the
scatterplot of the log-transformed raw intensities is
also shown.

> select = (0==rowSums(exprs(kidney)<=0))

> plot(log2(exprs(kidney)[select, ]),

+ main = "a) raw", pch = ".", asp=1)

> plot(exprs(xnorm), main = "b) vsn",

+ pch = ".", asp=1,

+ col=ifelse(select, "black", "orange"))

4See Section 12 for more on the relationship between
background correction and variance stabilising transforma-
tions.

To verify the variance stabilisation, there is
the function meanSdPlot. For each feature k =
1, . . . , n it shows the empirical standard deviation
σ̂k on the y-axis versus the rank of the average µ̂k

on the x-axis.

µ̂k =
1
d

d∑
i=1

hki σ̂2
k =

1
d− 1

d∑
i=1

(hki − µ̂k)2 (1)

> meanSdPlot(xnorm, ranks=TRUE)

> meanSdPlot(xnorm, ranks=FALSE)

The two plots are shown in Figure 2 on page 3.
The red dots, connected by lines, show the run-
ning median of the standard deviation5. The aim
of these plots is to see whether there is a system-
atic trend in the standard deviation of the data
as a function of overall expression. The assump-
tion that underlies the usefulness of these plots is
that most genes are not differentially expressed, so
that the running median is a reasonable estima-
tor of the standard deviation of feature level data
conditional on the mean. After variance stabili-
sation, this should be approximately a horizontal

5The parameters used were: window width 10%, window
midpoints 5%, 10%, 15%, . . . . It should be said that the
proper way to do is with quantile regression such as provided
by the quantreg package - what is done here for these plots
is simple, cheap and should usually be good enough due to
the abundance of data.
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line. It may have some random fluctuations, but
should not show an overall trend. If this is not the
case, that usually indicates a data quality prob-
lem, or is a consequence of inadequate prior data
preprocessing. The rank ordering distributes the
data evenly along the x-axis. A plot in which the
x-axis shows the average intensities themselves is
obtained by calling the plot command with the
argument ranks=FALSE; but this is less effective in
assessing variance and hence is not the default.

The histogram of the generalized log-ratios is
shown in Figure 3 on page 4.

3 Running VSN on data from
multiple arrays (“single colour
normalisation”)

The package includes example data from a series
of 8 spotted cDNA arrays on which cDNA samples
from different lymphoma were hybridised together
with a reference cDNA [7].

> data("lymphoma")

> dim(lymphoma)

Features Samples
9216 16

The 16 columns of the lymphoma object contain the
red and green intensities, respectively, from the 8
slides, as shown in Table 1. Thus, the CH1 intensi-
ties are in columns 1, 3, . . . , 15, the CH2 intensities
in columns 2, 4, . . . , 16. We can call justvsn on all
of them at once:

> lym = justvsn(lymphoma)

> meanSdPlot(lym)

Again, Figure 4 on page 5 helps to visually verify
that the variance stabilisation worked. As above,
we can obtain the generalised log-ratios for each
slide by subtracting the common reference intensi-
ties from those for the 8 samples:

> iref = seq(1, 15, by=2)

> ismp = seq(2, 16, by=2)

> M= exprs(lym)[,ismp]-exprs(lym)[,iref]

> A=(exprs(lym)[,ismp]+exprs(lym)[,iref])/2

> colnames(M) = lymphoma$sample[ismp]

> colnames(A) = colnames(M)
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Figure 3: Histogram of generalised log-ratios M for
the kidney example data.

> j = "DLCL-0032"

> smoothScatter(A[,j], M[,j], main=j,

+ xlab="A", ylab="M", pch=".")

> abline(h=0, col="red")

Figure 5 on page 5 shows the resulting M -A-plot [6]
for one of the arrays.

4 Running VSN on Affymetrix
genechip data

The package affy provides excellent functionality
for reading and processing Affymetrix genechip
data, and you are encouraged to refer to the doc-
umentation of the package affy for more informa-
tion about data structures and methodology. The
preprocessing of Affymetrix genechip data involves
the following steps: (i) background correction, (ii)
between-array normalization, (iii) transformation
and (iv) summarisation. The VSN method ad-
dresses steps (i)–(iii). For the summarisation, I
recommend to use the RMA method [10], and a
simple wrapper that provides all of these is pro-
vided through the method vsnrma.

> require("affydata")

> data("Dilution")

4



Figure 4: Standard deviation versus rank of the
mean for the lymphoma example data

> d_vsn = vsnrma(Dilution)

For comparison, we also run rma.

> d_rma = rma(Dilution)

The resulting scatterplots are shown and compared
in Figure 6 on page 6.

> par(pch=".")

> w = c(1,3)

> ax = c(2, 16)

> plot(exprs(d_vsn)[,w],

+ main="vsn: chip 1 vs 3",

+ asp=1, xlim=ax, ylim=ax)

> plot(exprs(d_rma)[,w],

+ main="rma: chip 1 vs 3",

+ asp=1, xlim=ax, ylim=ax)

> plot(exprs(d_rma)[,1], exprs(d_vsn)[,1],

+ xlab="rma", ylab="vsn",

+ asp=1, xlim=ax, ylim=ax,

+ main="chip 1: expression values")

> abline(a=0, b=1, col="red")

Both methods control the variance at low intensi-
ties, but we see that VSN does so more strongly.
The shrinkage (see also Section 12) is stronger with
VSN (cf. the bottom right plot), which also leads
to a lower dynamic range, cf. the bottom left plot.
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Figure 5: M -A-plot for slide DLCL-0032 from the
lymphoma example data. A false-colour represen-
tation of the data point density is used, in addition
the 100 data points in the least dense regions are
plotted as dots.

5 Running VSN on RGList ob-
jects

There is a justvsn method for RGList objects.
Usually, you will produce an RGList from your
own data using the read.maimages from the limma
package. Here, for the sake of demonstration, we
construct an RGList from lymphoma.

> require("limma")

> wg = which(lymphoma$dye=="Cy3")

> wr = which(lymphoma$dye=="Cy5")

> lymRG = new("RGList", list(

+ R=exprs(lymphoma)[, wr],

+ G=exprs(lymphoma)[, wg]))

> lymNCS = justvsn(lymRG)

The justvsn method for RGList converts its ar-
gument into an NChannelSet, using a copy of the
coercion method from Martin Morgan in the pack-
age convert. It then passes this on to the justvsn

method for NChannelSet. The return value is an
NChannelSet, shown in Table 2. Note that, due to
the flexibility in the amount and quality of meta-
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Figure 6: Results of vsnrma and rma on the Dilution example data. Chip 1 was hybridised with 20 µg
RNA from liver, Chip 3 with 10 µg of the same RNA.

> lymNCS

NChannelSet (storageMode: lockedEnvironment)
assayData: 9216 features, 8 samples
element names: G, R

phenoData
sampleNames: lc7b047.reference, lc7b048.reference, ..., lc7b058.reference (8 total)
varLabels and varMetadata description: none

featureData
featureNames: 1, 2, ..., 9216 (9216 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation:

Table 2: The NChannelSet object lymNCS.

data that is in an RGList, and due to differences
in the implementation of these classes, the transfer
of the metadata into the NChannelSet may not al-
ways produce the expected results, and that some
checking and often further dataset-specific postpro-
cessing of the sample metadata and the array fea-
ture annotation is needed. For the current exam-
ple, we construct the AnnotatedDataFrame object
adf and assign it into the phenoData slot of lym-
NCS.

> vmd = data.frame(

+ labelDescription=I(c("array ID",

+ "sample in G", "sample in R")),

+ channel=c("_ALL", "G", "R"),

+ row.names=c("arrayID", "sampG", "sampR"))

> arrayID = lymphoma$name[wr]

> stopifnot(identical(arrayID,

+ lymphoma$name[wg]))

> ## remove sample number suffix

> sampleType = factor(sub("-.*", "",

+ lymphoma$sample))

> v = data.frame(

+ arrayID = arrayID,

+ sampG = sampleType[wg],

+ sampR = sampleType[wr])

> v

arrayID sampG sampR
1 lc7b047 reference CLL
2 lc7b048 reference CLL
3 lc7b069 reference CLL
4 lc7b070 reference CLL
5 lc7b019 reference DLCL
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Figure 7: Left: histogram of p-values from the moderated t-test between the and groups on the lymM
values. Right: M -values for the 5 genes with the smallest p-values.

6 lc7b056 reference DLCL
7 lc7b057 reference DLCL
8 lc7b058 reference DLCL

> adf = new("AnnotatedDataFrame",

+ data=v,

+ varMetadata=vmd)

> phenoData(lymNCS) = adf

Now let us combine the red and green values from
each array into the glog-ratio M and use the linear
modeling tools from limma to find differentially ex-
pressed genes (note that it is often suboptimal to
only consider M, and that taking into account ab-
solute intensities as well can improve analyses).

> lymM = (assayData(lymNCS)$R -

+ assayData(lymNCS)$G)

> design = model.matrix( ~ lymNCS$sampR)

> lf = lmFit(lymM, design[, 2, drop=FALSE])

> lf = eBayes(lf)

Figure 7 on page 7 shows the resulting p-values and
the expression profiles of the genes corresponding
to the top 5 features.

> par(mfrow=c(1,2))

> hist(lf$p.value, 100, col="orange")

> pdat=t(lymM[order(lf$p.value)[1:5],])

> matplot(pdat,

+ lty=1, type="b", lwd=2,

+ col=hsv(seq(0,1,length=5), 0.7, 0.8),

+ ylab="M", xlab="arrays")

5.1 Background subtraction

Many image analysis programmes for microarrays
provide local background estimates, which are typ-
ically calculated from the fluorescence signal out-
side, but next to the features. These are not always
useful. Just as with any measurement, these local
background estimates are also subject to random
measurement error, and subtracting them from the
foreground intensities will lead to increased ran-
dom noise in the signal. On the other hand side,
doing so may remove systematic artifactual drifts
in the data, for example, a spatial gradient.

So what is the optimal analysis strategy, should
you subtract local background estimates or not?
The answer depends on the properties of your par-
ticular data. VSN itself estimates and subtracts an
over-all background estimate (per array and colour,
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> pData(lymphoma)

name sample dye
lc7b047.reference lc7b047 reference Cy3
lc7b047.CLL-13 lc7b047 CLL-13 Cy5
lc7b048.reference lc7b048 reference Cy3
lc7b048.CLL-13 lc7b048 CLL-13 Cy5
lc7b069.reference lc7b069 reference Cy3
lc7b069.CLL-52 lc7b069 CLL-52 Cy5
lc7b070.reference lc7b070 reference Cy3
lc7b070.CLL-39 lc7b070 CLL-39 Cy5
lc7b019.reference lc7b019 reference Cy3
lc7b019.DLCL-0032 lc7b019 DLCL-0032 Cy5
lc7b056.reference lc7b056 reference Cy3
lc7b056.DLCL-0024 lc7b056 DLCL-0024 Cy5
lc7b057.reference lc7b057 reference Cy3
lc7b057.DLCL-0029 lc7b057 DLCL-0029 Cy5
lc7b058.reference lc7b058 reference Cy3
lc7b058.DLCL-0023 lc7b058 DLCL-0023 Cy5

Table 1: The phenoData of the lymphoma dataset.

see Section 9), so an additional local background
correction is only useful if there actually is local
variability across an array, for example, a spatial
gradient.

Supposing that you have decided to subtract
the local background estimates, how is it done?
When called with the argument backgroundsub-
tract=TRUE6, the justvsn method will subtract lo-
cal background estimates in the Rb and Gb slots
of the incoming RGList. To demonstrate this, we
construct an RGList object lymRGwbg.

> rndbg=function(x, off, fac)

+ array(off+fac*runif(prod(dim(x))),

+ dim=dim(x))

> lymRGwbg = lymRG

> lymRGwbg$Rb = rndbg(lymRG, 100, 30)

> lymRGwbg$Gb = rndbg(lymRG, 50, 20)

In practice, of course, these values will be read from
the image quantitation file with a function such as
read.maimages that produces the RGList object.
We can call justvsn

> lymESwbg = justvsn(lymRGwbg[, 1:3],

+ backgroundsubtract=TRUE)

Here we only do this for the first 3 arrays to save
compute time.

6Note that the default value for this parameter is FALSE.

5.2 Print-tip groups

By default, VSN computes one normalisation
transformation with a common set of parameters
for all features of an array (separately for each
colour if it is a multi-colour microarray), see Sec-
tion 9. Sometimes, there is a need for stratifica-
tion by further variables of the array manufactur-
ing process, for example, print-tip groups (sectors)
or microtitre plates. This can be done with the
strata parameter of vsn2.

The example data that comes with the package
does not directly provide the information which
print-tip each feature was spotted with, but we can
easily reconstruct it:

> ngr = ngc = 4L

> nsr = nsc = 24L

> arrayGeometry = data.frame(

+ spotcol = rep(1:nsc,

+ times = nsr*ngr*ngc),

+ spotrow = rep(1:nsr,

+ each = nsc, times=ngr*ngc),

+ pin = rep(1:(ngr*ngc),

+ each = nsr*nsc))

and call

> EconStr = justvsn(lymRG[,1],

+ strata=arrayGeometry$pin)

To save CPU time, we only call this on the first
array. We compare the result to calling justvsn

without strata,

> EsenzaStr = justvsn(lymRG[,1])

A scatterplot comparing the transformed red inten-
sities, using the two models, is shown in Figure 8
on page 10.

> j = 1L

> plot(assayData(EsenzaStr)$R[,j],

+ assayData(EconStr)$R[,j],

+ pch = ".", asp = 1,

+ col = hsv(seq(0, 1, length=ngr*ngc),

+ 0.8, 0.6)[arrayGeometry$pin],

+ xlab = "without strata",

+ ylab = "print-tip strata",

+ main = sampleNames(lymNCS)$R[j])
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Figure 9: Scatterplots of fitted parameters, values on the x-axis correspond to normalisation without
missing data (fit1), values on the y-axis to normalisation with ≈ 10% missing data (fit2).

6 Missing values

The parameter estimation algorithm of VSN is able
to deal with missing values in the input data. To
demonstrate this, we generate an ExpressionSet
lym2 in which about 10% of all intensities are miss-
ing,

> lym2 = lymphoma

> wh = sample(prod(dim(lym2)), 16000)

> exprs(lym2)[wh] = NA

> table(is.na(exprs(lym2)))

FALSE TRUE
131456 16000

and call vsn2 on it.

> fit1 = vsn2(lymphoma)

> fit2 = vsn2(lym2)

The resulting fitted parameters are not identical,
but very similar, see Figure 9 on page 9.

> par(mfrow=c(1,2))

> for(j in 1:2){

+ p1 = coef(fit1)[,,j]

+ p2 = coef(fit2)[,,j]

+ d = max(abs(p1-p2))

+ stopifnot(d<(2/j))

+ plot(p1, p2, pch = 16, asp = 1,

+ main = paste(letters[j],

+ ": max.diff.=", signif(d,2), sep = ""),

+ xlab = "no missing data",

+ ylab = "10% of data missing")

+ abline(a = 0, b = 1, col = "blue")

+ }

7 Normalisation with ’spike-in’
probes

Normally, VSN uses all features on the array to
fit the calibration and transformation parameters,
and the algorithm relies, to a certain extent, on
the assumption that most of the features’ target
genes are not differentially expressed (see also Sec-
tion 13.2). If certain features are known to corre-
spond to, or not to correspond to, differentially ex-
pressed targets, then we can help the algorithm by
fitting the calibration and transformation parame-
ters only to the subset of features for which the“not
differentially expressed” assumption is most appro-
priate, and then applying the calibration and trans-
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Figure 8: Scatterplot of normalised and trans-
formed intensities for the red channel of array 1.
Values on the x-axis correspond to normalisation
without strata (EsenzaStr), values on the y-axis to
normalisation with strata (EconStr). The different
colours correspond to the 16 different strata.

formation to all features. For example, some ex-
perimental designs provide “spike-in” control spots
for which we know that their targets’ abundance is
the same across all arrays (and/or colours).

For demonstration, let us assume that in the
kidney data, features 100 to 200 are spike-in con-
trols. Then we can obtain a normalised dataset
nkid as follows.

> spikeins = 100:200

> spfit = vsn2(kidney[spikeins,],

+ lts.quantile=1)

> nkid = predict(spfit, newdata=kidney)

Note that if we are sufficiently confident that the
spikeins subset is really not differentially ex-
pressed, and also has no outliers for other, say tech-
nical, reasons, then we can set the robustness pa-
rameter lts.quantile to 1. This corresponds no
robustness (least sum of squares regression), but
makes most use of the data, and the resulting es-
timates will be more precise, which may be partic-
ularly important if the size of the spikeins set is
relatively small.

Not that this explicit subsetting strategy is de-
signed for features for which we have a priori
knowledge that their normalised intensities should
be unchanged. There is no need for you to de-
vise data-driven rules such as using a first call to
VSN to get a preliminary normalisation, identify
the least changing features, and then call VSN
again on that subset. This strategy is already built
into the VSN algorithm and is controlled by its
lts.quantile parameter. Please see Section 13.2
and reference [3] for details.

8 Normalisation against an ex-
isting reference dataset

So far, we have considered the joint normalisation
of a set of arrays to each other. What happens if,
after analysing a set of arrays in this fashion, we
obtain some additonal arrays? Do we re-run the
whole normalisation again for the complete, new
and bigger set of arrays? This may sometimes be
impractical.

Suppose we have used a set of training arrays for
setting up a classifier that is able to discriminate
different biological states of the samples based on
their mRNA profile. Now we get new test arrays
to which we want to apply the classifier. Clearly,
we do not want to re-run the normalisation for
the whole, new and bigger dataset, as this would
change the training data; neither can we normalise
only the test arrays among themselves, without
normalising them “towards” the reference training
dataset. What we need is a normalisation proce-
dure that normalises the new test arrays “towards”
the existing reference dataset without changing the
latter.

To simulate this situation with the available ex-
ample data, pretend that the Cy5 channels of the
lymphoma dataset can be treated as 8 single-colour
arrays, and fit a model to the first 7.

> ref = vsn2(lymphoma[, ismp[1:7]])

Now we call vsn2 on the 8-th array, with the output
from the previous call as the reference.

> f8 = vsn2(lymphoma[, ismp[8]],

+ reference = ref)

We can compare this to what we get if we fit the
model to all 8 arrays,
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Figure 10: Scatterplot of normalised intensities
after normalisation by reference (x-axis, f8) and
joint normalisation (y-axis, fall). There is good
agreement.

> fall = vsn2(lymphoma[, ismp])

> coefficients(f8)[,1,]

[1] -0.396 -3.509

> coefficients(fall)[,8,]

[1] -0.322 -3.506

and compare the resulting values in the scatterplot
shown in Figure 10 on page 11: they are very sim-
ilar.

> plot(exprs(f8), exprs(fall)[,8],

+ pch=".", asp=1)

> abline(a=0, b=1, col="red")

More details on this can be found in the vignettes
Verifying and assessing the performance with simu-
lated data and Likelihood Calculations for vsn that
come with this package.

9 The calibration parameters

If yki is the matrix of uncalibrated data, with k
indexing the rows and i the columns, then the cal-
ibrated data y′ki is obtained through scaling by λsi

and shifting by αsi:

y′ki = λsiyki + αsi (2)

where s ≡ s(k) is the so-called stratum for feature
k. In the simplest case, there is only one stratum,
i. e. the index s is always equal to 1, or may be
omitted altogether. This amounts to assuming that
the data of all features on an array were subject to
the same systematic effects, such that an array-
wide calibration is sufficient.

A model with multiple strata per array may be
useful for spotted arrays. For these, stratifica-
tion may be according to print-tip [6] or PCR-
plate [2]. For oligonucleotide arrays, it may be
useful to stratify the features by physico-chemical
properties, e. g. to assume that features of dif-
ferent sequence composition attract systematically
different levels of unspecific background signal.

The transformation to a scale where the variance
of the data is approximately independent of the
mean is

hki = arsinh(λ0y
′
ki + α0) (3)

= log
(
λ0y
′
ki + α0 +

√(
λ0y′ki + α0

)2 + 1
)
,

with two parameters λ0 and α0. Equations (2) and
(3) can be combined, so that the whole transforma-
tion is given by

hki = arsinh
(
ebsi · yki + asi

)
. (4)

Here, asi = αsi +λ0αsi and bsi = log(λ0λsi) are the
combined calibation and transformation parame-
ters for features from stratum s and sample i. Us-
ing the parameter bsi as defined here rather than
ebsi appears to make the numerical optimisation
more reliable (less ill-conditioned).

We can access the calibration and transforma-
tion parameters through

> coef(fit)[1,,]

[,1] [,2]
[1,] -0.553 -5.83
[2,] -0.537 -5.86

For a dataset with d samples and s strata,
coef(fit) is a numeric array with dimensions
(s, d, 2). For the example data that was used in
Section 1 to generate fit, d = 2 and s = 1.
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coef(fit)[s, i, 1], the first line in the results
of the above code chunk, is what was called asi

in Eqn. (4), and coef(fit)[s, i, 2], the second
line, is bsi.

9.1 The calibration parameters and the
additive-multiplicative error model

VSN is based on the additive-multiplicative error
model [4, 5], which predicts a quadratic variance-
mean relationship of the form [1]

v(u) = (c1u+ c2)2 + c3. (5)

This is a general parameterization of a parabola
with three parameters c1, c2 and c3. Here, u is the
expectation value (mean) of the signal, and v the
variance. c1 is also called the coefficient of varia-
tion, since for large u,

√
v/u ≈ c1. The minimum

of v is c3, this is the variance of the additive noise
component. It is attained at u = −c2/c3, and this
is the expectation value of the additive noise com-
ponent, which ideally were zero (c2 = 0), but in
many applications is different from zero. Only the
behaviour of v(u) for u ≥ −c2/c3 is typically rele-
vant.

The parameters a and b from Equation (4)7 and
the parameters of the additive-multiplicative error
model are related by [1]

a =
c2√
c3

eb =
c1√
c3

(6)

This relationship is not 1:1, and it has a divergence
at c3 → 0; both of these observations have practical
consequences, as explained in the following.

1. The fact that Equations (6) do not constitute
a 1:1 relationship means that multiple param-
eter sets of the additive-multiplicative error
model can lead to the same transformation.
This can be resolved, for example, if the coef-
ficient of variation c1 is obtained by some other
means than the vsn2 function. For example, it
can be estimated from the standard deviation
of the VSN-transformed data, which is, in the

7I drop the indices s, k and i, since for the purpose of
this section, they are passive

approximation of the delta method, the same
as the coefficient of variation [1, 3]. Then,

c3 = c21 e
−2b

c2 = c1 ae
−b. (7)

2. The divergence for c3 → 0 can be a more
serious problem. In some datasets, c3 is in
fact very small. This is the case if the size
of the additive noise is negligible compared
to the multiplicative noise throughout the dy-
namic range of the data, even for the small-
est intensities. In other words, the additive-
multiplicative error model is overparameter-
ized, and a simpler multiplicative-only model
would be good enough. VSN is designed to
still produce reasonable results in these cases,
in the sense that the transformation stabilizes
the variance (it turns essentially into the usual
logarithm transformation), but the resulting
fit coefficients can be unstable.

The assessment of the precision of the esti-
mated values of a and b (e. g. by resampling,
or by using replicate data) is therefore usu-
ally not very relevant; what is relevant is an
assessment of the precision of the estimated
transformation, i. e. how much do the trans-
formed values vary [3].

9.2 More on calibration

Now suppose the kidney example data were not
that well measured, and the red channel had a
baseline that was shifted by 500 and a scale that
differed by a factor of 0.25:

> bkid = kidney

> exprs(bkid)[,1]=0.25*(500+exprs(bkid)[,1])

We can again call vsn2 on these data

> bfit = vsn2(bkid)

> plot(exprs(bkid), main="raw",

+ pch=".", log="xy")

> plot(exprs(bfit), main="vsn",

+ pch=".")

> coef(bfit)[1,,]

Notice the change in the parameter b of the red
channel: it is now larger by about log(4) ≈ 1.4,
and the shift parameter a has also been adjusted.
The result is shown in Figure 11 on page 13.
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Figure 11: Scatterplots for badly biased data. Left hand side: raw data on log-log scale, right hand side:
after calibration and transformation with vsn.

10 Variance stabilisation with-
out calibration

It is possible to force λsi = 1 and αsi = 0 for all s
and i in Equation (2) by setting vsn2’s parameter
calib to "none". Hence, only the global variance
stabilisation transformation (3) will be applied, but
no column- or row-specific calibration.

Here, I show an example where this feature is
used in conjunction with quantile normalisation.

> lym_q = normalizeQuantiles(exprs(lymphoma))

> lym_qvsn = vsn2(lym_q, calib="none")

> plot(exprs(lym_qvsn)[, 1:2], pch=".",

+ main="lym_qvsn")

> plot(exprs(lym)[,1], exprs(lym_qvsn)[, 1],

+ main="lym_qvsn vs lym", pch=".",

+ ylab="lym_qvsn[,1]", xlab="lym[,1]")

The result is shown in Figure 12 on page 14.

11 Assessing the performance of
VSN

VSN is a parameter estimation algorithm that fits
the parameters for a certain model. In order to see

how good the estimator is, we can look at bias, vari-
ance, sample size dependence, robustness against
model misspecificaton and outliers. This is done
in the vignette Verifying and assessing the perfor-
mance with simulated data that comes with this
package.

Practically, the more interesting question is how
different microarray calibration and data trans-
formation methods compare to each other. Two
such comparisons were made in reference [1], one
with a set of two-colour cDNA arrays, one with
an Affymetrix genechip dataset. Fold-change esti-
mates from VSN led to higher sensitivity and speci-
ficity in identifying differentially expressed genes
than a number of other methods.

A much more sophisticated and wider-
scoped approach was taken by the Affy-
comp benchmark study, presented at
http://affycomp.biostat.jhsph.edu. It
uses two benchmark datasets: a Spike-In dataset,
in which a small number of cDNAs was spiked in
at known concentrations and over a wide range of
concentrations on top of a complex RNA back-
ground sample; and a Dilution dataset, in which
RNA samples from heart and brain were combined
in a number of dilutions and proportions. The
design of the benchmark study, which has been
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Figure 12: The left panel shows the scatterplot between the red and green intensities of the array of the
lymphoma dataset after quantile normalisation followed by VSN variance stabilisation without calibration.
The right panel compares the values from that method, for CH1 of the first array, to that of VSN variance
stabilisation with affine calibration (lym was computed in Section 3).

open for anyone to submit their method, was de-
scribed in reference [8]. A discussion of its results
was given in reference [9]. One of the results that
emerged was that VSN compares well with the
background correction and quantile normalization
method of RMA; both methods place a high
emphasis on precision of the expression estimate,
at the price of a certain bias (see also Section 12).
Another result was that reporter-sequence specific
effects (e. g. the effect of GC content) play a large
role in these data and that substantial improve-
ments can be achieved when they are taken into
account (something which VSN does not do).

Of course, the two datasets that were used in
Affycomp were somewhat artificial: they had fewer
differentially expressed genes and were probably of
higher quality than in most real-life applications.
And, naturally, in the meanwhile the existence
of this benchmark has led to the development of
new processing methods where a certain amount
of overfitting may have occured.

I would also like to note the interaction between
normalization/preprocessing and data quality. For
data of high quality, one can argue that any decent
preprocessing method should produce more or less

the same results; differences arise when the data
are problematic, and when more or less successful
measures may be taken by preprocessing methods
to correct these problems.

12 VSN, shrinkage and back-
ground correction

Generalised log-ratios can be viewed as a shrink-
age estimator : for low intensities either in the nu-
merator and denominator, they are smaller in ab-
solute value than the standard log-ratios, whereas
for large intensities, they become equal. Their ad-
vantage is that they do not suffer from the vari-
ance divergence of the standard log-ratios at small
intensities: they remain well-defined and have lim-
ited variance when the data come close to zero or
even become negative. An illustration is shown in
Figure 13 on page 19. Please consult the references
for more on the mathematical background [1–3].

It is possible to give a Bayesian interpretation:
our prior assumption is the conservative one of no
differential expression. Evidence from a feature
with high overall intensity is taken strongly, and
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the posterior results in an estimate close to the em-
pirical intensity ratio. Evidence from features with
low intensity is downweighted, and the posterior is
still strongly influenced by the prior.

13 Quality assessment

Quality problems can often be associated with
physical parameters of the manufacturing or ex-
perimental process. Let us look a bit closer at the
lymphoma data. Recall that M is the 9216 times 8
matrix of generalized log-ratios and A a matrix of
the same size with the average glog2-transformed
intensities. The dataframe arrayGeometry (from
Section 5.2) contains, for each array feature, the
identifier of the print-tip by which it was spotted
and the row and column within the print-tip sec-
tor. Figure 14 on page 16 shows the boxplots of A
values of array CLL-13 stratified by row.

> colours = hsv(seq(0,1,length=nsr),0.6,1)

> j = "CLL-13"

> boxplot(A[, j] ~ arrayGeometry$spotrow,

+ col=colours, main=j,

+ ylab="A", xlab="spotrow")

You may want to explore similar boxplots for
other stratifying factors such as column within
print-tip sector or print-tip sector and look at these
plots for the other arrays as well.

In Figure 14 on page 16, we see that the features
in rows 22 and 23 are all very dim. If we now
look at these data in the M -A-plot (Figure 15 on
page 19), we see that these features not only have
low A-values, but fall systematically away from the
M = 0 line.

> plot(A[,j], M[,j], pch=16, cex=0.3,

+ col=ifelse(arrayGeometry$spotrow%in%(22:23),

+ "orange", "black"))

> abline(h=0, col="blue")

Hence, in a naive analysis the data from these
features would be interpreted as contributing ev-
idence for differential expression, while they are
more likely just the result of a quality problem.
So what can we do? There are some options:

1. Flag the data of the affected features as unre-
liable and set them aside from the subsequent
analysis.

2. Use a more complex, stratified normalisation
method that takes into account the differ-
ent row behaviours, for example, VSN with
strata (see Section 5.2).

3. It has also been proposed to address this type
of problem by using a non-linear regression on
the A-values, for example the loess normaliza-
tion of reference [11] that simply squeezes the
M -A-plot to force the centre of the distribu-
tion of M to lie at 0 along the whole A-range.

An advantage of option 3 is that it works with-
out knowing the real underlying stratifying factor.
However, it assumes that the stratifying factor is
strongly confounded with A, and that biases that
it causes can be removed through a regression on
A.

In the current example, if we believe that the real
underlying stratifying factor is indeed row within
sector, this assumption means that (i) few of the
data points from rows 22 and 23 have high A-
values, and that (ii) almost all data points with
very low A values are from these rows; while (i)
appears tenable, (ii) is definitely not the case.

13.1 Stratifying factors such as print-
tip, PCR plate, reporter-sequence

By default, the VSN method assumes that the mea-
sured signal yik increases, to sufficient approxima-
tion, proportionally to the mRNA abundance cik
of gene k on the i-th array, or on the i-th colour
channel:

yik ≈ αi + λiλkcik. (8)

For a series of d single-colour arrays, i = 1, . . . , d,
and the different factors λi reflect the different ini-
tial amounts of sample mRNA or different overall
reverse transcription, hybridisation and detection
efficiencies. The feature affinity λk contains fac-
tors that affect all measurements with feature k
in the same manner, such as sequence-specific la-
belling efficiency. The λk are assumed to be the
same across all arrays. There can be a non-zero
overall offset αi. For a two-colour cDNA array,
i = 1, 2, and the λi take into account the different
overall efficiencies of the two dyes8.

8It has been reported that for some genes the dye bias
is different from gene to gene, such that the proportionality
factor does not simply factorise as in (8). As long as this
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Figure 14: Boxplot of A values of array CLL-13 stratified by within-sector row. The features in rows 22
and 23 are all very dim.

Equation 8 can be generalised to

yik ≈ αis + λisλkcik. (9)

that is, the background term αis and the gain fac-
tor λis can be different for different groups s of fea-
tures on an array. The VSN methods allows for this
option by using the strata argument of the func-
tion vsn2. We have seen an example above where
this could be useful. For Affymetrix genechips, one
can find systematic dependences of the affinities
λis and the background terms αis on the reporter
sequence, however, the optimal stratification of re-
porters based on their sequence is an active area of
research.

Nevertheless, there are situations in which either
assumption (8) or (9) is violated, and these in-
clude:

Saturation. The biochemical reactions and/or
the photodetection can be run in such a man-
ner that saturation effects occur. It may be

only occurs sporadically, this will not have much effect on
the estimation of the calibration and variance stabilisation
parameters. Further, by using an appropriate experimental
design such as colour-swap or reference design, the effects
of gene-specific dye biases on subsequent analyses can be
reduced.

possible to rescue such data by using non-
linear transformations. Alternatively, it is rec-
ommended that the experimental parameters
are chosen to avoid saturation.

Batch effects. The feature affinities λk may dif-
fer between different manufacturing batches
of arrays due, e.g., to different qualities of
DNA amplification or printing. VSN cannot
be used to simultaneously calibrate and trans-
form data from different batches.

How to reliably diagnose and deal with such vio-
lations is beyond the scope of this vignette; see the
references for more [2, 6].

13.2 Most genes unchanged assumption

With respect to the VSN model fitting, data from
differentially transcribed genes can act as outliers
(but they do not necessarily need to do so in all
cases). The maximal number of outliers that do
not gravely affect the model fitting is controlled by
the parameter lts.quantile. Its default value is
0.9, which allows for 10% outliers. The value of
lts.quantile can be reduced down to 0.5, which
allows for up to 50% outliers. The maximal value
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is 1, which results in a least-sum-of-squares estima-
tion that does not allow for any outliers.

So why is this parameter lts.quantile user-
definable and why don’t we just always use the
most “robust” value of 0.5? The answer is that
the precision of the estimated VSN parameters is
better the more data points go into the estimates,
and this may especially be an issue for arrays with
a small number of features9. So if you are confident
that the number of outliers is not that large, using
a high value of lts.quantile can be justified.

There has been confusion on the role of the
“most genes unchanged assumption”, which pre-
sumes that only a minority of genes on the arrays is
detectably differentially transcribed across the ex-
periments. This assumption is a sufficient condi-
tion for there being only a small number of outliers,
and these would not gravely affect the VSN model
parameter estimation. However, it is not a neces-
sary condition: the parameter estimates and the
resulting normalised data may still be useful if the
assumption does not hold, but if the effects of the
data from differentially transcribed genes balance
out.
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> toLatex(sessionInfo())

• R version 2.9.0 (2009-04-17), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: affy 1.22.0, affydata 1.11.5, Biobase 2.4.0, hgu95av2cdf 2.4.0, limma 2.18.0, vsn 3.12.0

• Loaded via a namespace (and not attached): affyio 1.12.0, grid 2.9.0, KernSmooth 2.22-22, lat-
tice 0.17-22, preprocessCore 1.6.0

Table 3: The output of sessionInfo on the build system after running this vignette.
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Figure 13: The shrinkage property of the gener-
alised log-ratio. Blue diamonds and error bars cor-
respond to mean and standard deviation of the
generalised log-ratio h, as obtained from VSN, and
black dots and error bars to the standard log-ratio q
(both base 2). For this figure, data were generated
from the additive-multiplicative error model [3–5].
The horizontal line corresponds to the true log2-
ratio 1 (corresponding to a factor of 2). For inten-
sities x2 that are larger than about ten times the
additive noise level σa, generalised log-ratio h and
standard log-ratio q coincide. For smaller inten-
sities, we can see a variance-bias trade-off : q has
no bias but a huge variance, thus an estimate of
the fold change based on a limited set of data can
be arbitrarily off. In contrast, h keeps a constant
variance – at the price of systematically underesti-
mating the true fold change.

Figure 15: M -A-plot of the data from array CLL-
13. Dots coloured in orange are from rows 22 and
23. A possible explanation may be as follows (al-
though I do not know for sure that this is the right
explanation): The PCR product (cDNA) that is
spotted on these arrays is put on by a print head
that sucks cDNA out of microtitre plates and de-
posits them in spots one after another, row by row.
If the content of one plate is faulty, this results in
a set of subsequent spots that are faulty. Because
the 16 print-tip sectors are spotted in parallel, this
affects all sectors in the same way.
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