\name{PRIM.real.data.min} \alias{PRIM.real.data.min} \alias{out.expand} \alias{out.peel} \alias{out.cv} \alias{Rule1.idx} \alias{TD1} \alias{TD2} \alias{box.idx.list} \alias{box.idx.listTD1} \alias{box.idx.listTD2} \alias{box.support.ES} \alias{box.support.PS} \alias{means.ES} \alias{means.PS} \alias{type.ES} \alias{type.PS} \alias{best.box.X.ranges} \docType{data} \title{PRIM output from VRCmin data analysis} \description{ The HIV-protein stimulated \link{st.1829} FCS R-object and the unstimulated \link{unst.1829} FCS R-object from the \link{VRCmin} data were used to exemplify the PRIM algorithm on a real dataset. The three steps for the finding of a single rule were saved as output. The \link{out.peel} is the 'PRIM.step' class object of the Peeling step. The \link{out.expand} is the 'PRIM.step' class object of the Expansion Step. The \link{out.cv} is the 'PRIM.crossval.step' class object of the cross-validation step. From these output objects we obtain the necessary indices and vectors for making plots that are exemplified in PRIM.pdf. } \usage{data(PRIM.real.data.min)} \format{ \item{box.idx.list}{Peeling Step: a list of five boxes that were in the peeling sequence of 'out.peel' which used the whole data 'X'} \item{box.support.PS}{Peeling Step: The vector of proportions of X that lie in the peeled box for each iteration of the expansion step from 'out.peel'} \item{means.PS}{Peeling Step: The vector of means(Y) of each peeled box for each iteration from 'out.peel'} \item{type.PS}{Peeling Step: The vector of peeling types, denoting the direction and variable for the addition of new points into the box for each iteration from 'out.peel'} \item{box.support.ES}{Expansion Step: The vector of proportions of X that lie in the expanded box for each iteration of the expansion step from 'out.expand'} \item{means.ES}{Expansion Step: The vector of means(Y) of each expanded box for each iteration from 'out.expand'} \item{type.ES}{Expansion Step: The vector of expansion types, denoting the direction and variable for the addition of new points into the box for each iteration from 'out.expand'} \item{best.box.X.ranges}{Expansion Step: The X-variable ranges of the final rule estimated after the Expansion Step from 'out.expand'} \item{Rule1.idx}{Expansion Step: The index of the final rule obtained after the expansion step from out.expand} \item{TD1}{Cross-Validation Step: vector of positional row indices corresponding to the first testdata set which is subset from the original 'X' data (which is constructed in the example below)} \item{TD2}{Cross-Validation Step: vector of positional row indices corresponding to the second testdata set which is subset from the original 'X' data (which is constructed in the example below)} \item{box.idx.listTD1}{Cross-Validation Step: a list of five boxes in the peeling sequence of the first Testdata set} \item{box.idx.listTD2}{Cross-Validation Step: a list of five boxes in the peeling sequence of the second Testdata set} } \details{ The class information, extraction, plotting, implementation tools for the 'PRIM.step' and the 'PRIM.crossval.step' class objects are detailed in the \pkg{rfcprim} package. } \source{ See \link{VRCmin} } \references{ See \link{VRCmin} and \pkg{rfcprim}. } \examples{ data(PRIM.real.data) ## the following code was used to generate the output if (FALSE){ data(VRCmin) ## the HIV-protein stimulation status Y <- c(rep(1, dim.FCS(st.1829)[1]), rep(0, dim.FCS(unst.1829)[1])) ## the dataset X <- rbind(as(st.1829, "matrix"), as(unst.1829, "matrix")) if (require(rfcprim)){ out.peel <- peel.step(X, Y, min.box.size = 500, alpha=0.10, verbose=TRUE) out.expand <- expand.step(X, Y, out.peel@best.box.idx, beta=0.01, verbose=TRUE) out.cv <- crossval.step(X, Y, num.testdata=2, prob.testdata=c(0.50, 0.50), alpha=0.10, target.mu.Y=1, min.box.size=500, choose.best.box.decision=c("max.mean.box", "final.box"), beta=0.01, verbose=TRUE) box.idx.list <- list(out.peel@best.box.idx, out.expand@best.box.idx) box.support.PS <- out.peel@box.support.vec means.PS <- out.peel@means.vec type.PS <- out.peel@type.vec box.support.ES <- out.expand@box.support.vec means.ES <- out.expand@means.vec type.ES <- out.expand@type.vec best.box.X.ranges <- out.expand@best.box.X.ranges Rule1.idx <- out.expand@best.box.idx TD1 <- out.cv[1, "testdata.idx.list"] TD2 <- out.cv[2, "testdata.idx.list"] box.idx.listTD1 <- list(out.cv[1,"step.set.list"]@peel.step@best.box.idx, out.cv[1, "step.set.list"]@expand.step@best.box.idx) box.idx.listTD2 <- list(out.cv[2,"step.set.list"]@peel.step@best.box.idx, out.cv[2, "step.set.list"]@expand.step@best.box.idx) } } } \keyword{datasets}