\name{plgem.pValue} \alias{plgem.pValue} \title{Computation of PLGEM p-values} \description{ This function computes p-values for observed PLGEM signal-to-noise ratio (STN) values (typically obtained via a call to \code{\link{plgem.obsStn}}) from resampled STN values (typically obtained via a call to \code{\link{plgem.resampledStn}}). } \usage{ plgem.pValue(observedStn, plgemResampledStn, verbose=FALSE) } \arguments{ \item{observedStn}{\code{matrix} of observed PLGEM STN values; output of \code{\link{plgem.obsStn}}.} \item{plgemResampledStn}{\code{list}; output of \code{\link{plgem.resampledStn}}.} \item{verbose}{\code{logical}; if \code{TRUE}, comments are printed out while running.} } \details{ The p-value of each given observed STN value is computed based on the quantile that the given value occupies in the corresponding distribution of resampled PLGEM STN values, based on the following relationship: p-value = min(2*quantile, 2*(1-quantile)) } \value{ \code{plgem.pValue} returns a matrix with the same \code{\link{dim}}ensions and \code{\link{dimnames}} as the input \sQuote{observedStn}, where each entry represents the p-value of the corresponding observed PLGEM STN value. } \references{ Pavelka N, Pelizzola M, Vizzardelli C, Capozzoli M, Splendiani A, Granucci F, Ricciardi-Castagnoli P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004 Dec 17;5:203; \url{http://www.biomedcentral.com/1471-2105/5/203} Pavelka N, Fournier ML, Swanson SK, Pelizzola M, Ricciardi-Castagnoli P, Florens L, Washburn MP. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics. 2007 Nov 19; \url{http://www.mcponline.org/cgi/content/abstract/M700240-MCP200v1} } \author{ Mattia Pelizzola \email{mattia.pelizzola@gmail.com} Norman Pavelka \email{nxp@stowers-institute.org} } \seealso{ \code{\link{plgem.fit}}, \code{\link{plgem.obsStn}}, \code{\link{plgem.resampledStn}}, \code{\link{run.plgem}} } \examples{ data(LPSeset) LPSfit <- plgem.fit(data=LPSeset) LPSobsStn <- plgem.obsStn(data=LPSeset, plgemFit=LPSfit) head(LPSobsStn) set.seed(123) LPSresampledStn <- plgem.resampledStn(data=LPSeset, plgemFit=LPSfit) LPSpValues <- plgem.pValue(LPSobsStn, LPSresampledStn) head(LPSpValues) } \keyword{models}