\name{nem.greedyMAP} \alias{nem.greedyMAP} \alias{print.nem.greedyMAP} \title{Infers a phenotypic hierarchy using an alternating MAP optimization} \description{ Starting with an initial estimate of the linking of E-genes to S-genes from the data, this method performs an alternating MAP optimization of the S-genes graph and the linking graph until convergence. As a final step the function \code{closest.transitive.greedy} can be invoked to find a transitively closed graph most similar to the original one. } \usage{ nem.greedyMAP(D,Pe=NULL,Pm=NULL,lambda=0,delta=1, trans.close=TRUE, verbose=TRUE) \method{print}{nem.greedyMAP}(x, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{D}{data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.} \item{Pe}{prior position of effect reporters. Default: uniform over nodes in hierarchy} \item{Pm}{prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describing the probability of an edge between gene i and gene j.} \item{lambda}{regularization parameter to incorporate prior assumptions.} \item{delta}{regularization parameter for automated E-gene subset selection} \item{trans.close}{find a similar transitively closed graph} \item{verbose}{do you want to see progress statements printed or not? Default: TRUE} \item{x}{nem object} \item{...}{other arguments to pass} } \value{ nem object } \author{Holger Froehlich} \examples{ data("BoutrosRNAi2002") res <- nem(BoutrosRNAiLods, inference="nem.greedyMAP", delta=0) # plot graph plot(res,what="graph") # plot posterior over effect positions plot(res,what="pos") # estimate of effect positions res$mappos } \seealso{\code{\link{nem}}, \code{\link{closest.transitive.greedy}}} \keyword{models}