\name{moduleNetwork} \alias{moduleNetwork} \alias{print.ModuleNetwork} \title{Infers a phenotypic hierarchy using the module network} \description{ Function \code{moduleNetwork} estimates the hierarchy using a divide and conquer approach. In each step only a subset of nodes (called module) is involved and no exhaustive enumeration of model space is needed as in function \code{score}. } \usage{ moduleNetwork(D,type="mLL",Pe=NULL,Pm=NULL,lambda=0,delta=1,para=NULL,hyperpara=NULL,verbose=TRUE) \method{print}{ModuleNetwork}(x,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{D}{data matrix. Columns correspond to the nodes in the silencing scheme. Rows are phenotypes.} \item{type}{see \code{nem}} \item{Pe}{prior position of effect reporters. Default: uniform over nodes in hierarchy} \item{Pm}{prior on model graph (n x n matrix) with entries 0 <= priorPhi[i,j] <= 1 describing the probability of an edge between gene i and gene j.} \item{lambda}{regularization parameter to incorporate prior assumptions.} \item{delta}{regularization parameter for automated E-gene subset selection (CONTmLLRatio only)} \item{para}{vector with parameters a and b for "mLL", if count matrices are used} \item{hyperpara}{vector with hyperparameters a0, b0, a1, b1 for "FULLmLL"} \item{verbose}{do you want to see progress statements printed or not? Default: TRUE} \item{x}{nem object} \item{...}{other arguments to pass} } \details{ \code{moduleNetwork} is an alternative to exhaustive search by the function \code{score} and more accurate than \code{pairwise.posterior} and \code{triples.posterior}. It uses clustering to sucessively split the network into smaller modules, which can then be estimated completely. Connections between modules are estimated by performing a constraint greedy hillclimbing. } \value{ nem object } \references{ \item{[1]}{Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Large Scale Statistical Inference of Signaling Pathways from RNAi and Microarray Data. BMC Bioinformatics, 2007.} \item{[2]}{Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T: Estimating Large Scale Signaling Networks through Nested Effects Models from Intervention Effects in Microarray Data. Bioinformatics, 1, 2008. } } \author{Holger Froehlich} \seealso{\code{\link{score}}, \code{\link{nem}}} \examples{ data("BoutrosRNAi2002") res <- nem(BoutrosRNAiDiscrete[,9:16],para=c(.13,.05),inference="ModuleNetwork") # plot graph plot(res,what="graph") # plot posterior over effect positions plot(res,what="pos") # estimate of effect positions res$mappos } \keyword{graphs}