\name{mt.rawp2adjp} \alias{mt.rawp2adjp} \title{Adjusted p-values for simple multiple testing procedures} \description{ This function computes adjusted \eqn{p}-values for simple multiple testing procedures from a vector of raw (unadjusted) \eqn{p}-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for strong control of the family-wise Type I error rate (FWER), and the Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of the false discovery rate (FDR). } \usage{ mt.rawp2adjp(rawp, proc=c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY")) } \arguments{ \item{rawp}{A vector of raw (unadjusted) \eqn{p}-values for each hypothesis under consideration. These could be nominal \eqn{p}-values, for example, from t-tables, or permutation \eqn{p}-values as given in \code{mt.maxT} and \code{mt.minP}. If the \code{mt.maxT} or \code{mt.minP} functions are used, raw \eqn{p}-values should be given in the original data order, \code{rawp[order(index)]}.} \item{proc}{A vector of character strings containing the names of the multiple testing procedures for which adjusted \eqn{p}-values are to be computed. This vector should include any of the following: \code{"Bonferroni"}, \code{"Holm"}, \code{"Hochberg"}, \code{"SidakSS"}, \code{"SidakSD"}, \code{"BH"}, \code{"BY"}. } } \details{ Adjusted \eqn{p}-values are computed for simple FWER and FDR controlling procedures based on a vector of raw (unadjusted) \eqn{p}-values. \item{Bonferroni}{Bonferroni single-step adjusted \eqn{p}-values for strong control of the FWER.} \item{Holm}{Holm (1979) step-down adjusted \eqn{p}-values for strong control of the FWER.} \item{Hochberg}{ Hochberg (1988) step-up adjusted \eqn{p}-values for strong control of the FWER (for raw (unadjusted) \eqn{p}-values satisfying the Simes inequality).} \item{SidakSS}{Sidak single-step adjusted \eqn{p}-values for strong control of the FWER (for positive orthant dependent test statistics).} \item{SidakSD}{Sidak step-down adjusted \eqn{p}-values for strong control of the FWER (for positive orthant dependent test statistics).} \item{BH}{adjusted \eqn{p}-values for the Benjamini & Hochberg (1995) step-up FDR controlling procedure (independent and positive regression dependent test statistics).} \item{BY}{adjusted \eqn{p}-values for the Benjamini & Yekutieli (2001) step-up FDR controlling procedure (general dependency structures).} } \value{ A list with components \item{adjp}{A matrix of adjusted \eqn{p}-values, with rows corresponding to hypotheses and columns to multiple testing procedures. Hypotheses are sorted in increasing order of their raw (unadjusted) \eqn{p}-values.} \item{index}{A vector of row indices, between 1 and \code{length(rawp)}, where rows are sorted according to their raw (unadjusted) \eqn{p}-values. To obtain the adjusted \eqn{p}-values in the original data order, use \code{adjp[order(index),]}. } } \references{ Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. \emph{J. R. Statist. Soc. B}. Vol. 57: 289-300.\cr Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypothesis testing under dependency. \emph{Annals of Statistics}. Accepted.\cr S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray experiments.\cr Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothesis, Technical Report \#633 of UCB Stat. \url{http://www.stat.berkeley.edu/~gyc}\cr Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, \emph{Biometrika}. Vol. 75: 800-802.\cr S. Holm (1979). A simple sequentially rejective multiple test procedure. \emph{Scand. J. Statist.}. Vol. 6: 65-70. } \author{ Sandrine Dudoit, \url{http://www.stat.berkeley.edu/~sandrine},\cr Yongchao Ge, \email{yongchao.ge@mssm.edu}. } \seealso{\code{\link{mt.maxT}}, \code{\link{mt.minP}}, \code{\link{mt.plot}}, \code{\link{mt.reject}}, \code{\link{golub}}.} \examples{ # Gene expression data from Golub et al. (1999) # To reduce computation time and for illustrative purposes, we condider only # the first 100 genes and use the default of B=10,000 permutations. # In general, one would need a much larger number of permutations # for microarray data. data(golub) smallgd<-golub[1:100,] classlabel<-golub.cl # Permutation unadjusted p-values and adjusted p-values for maxT procedure res1<-mt.maxT(smallgd,classlabel) rawp<-res1$rawp[order(res1$index)] # Permutation adjusted p-values for simple multiple testing procedures procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY") res2<-mt.rawp2adjp(rawp,procs) } \keyword{htest}