\name{build.mim} \alias{build.mim} \title{Build Mutual Information Matrix} \usage{build.mim(data, estimator="mi.empirical")} \arguments{ \item{data}{data.frame containing gene expression data or any dataset where columns contain variables/features and rows contain outcomes/samples.} \item{estimator}{The name of the mutual information estimator. The package implements four estimators : "mi.empirical", "mi.mm", "mi.shrink", "mi.sg" (default:"mi.empirical") - see details. These estimators require discrete data values - see \code{\link{discretize}}.} } \value{ \code{build.mim} returns the mutual information matrix.} \description{ \code{build.mim} takes the dataset as input and computes the mutual information beetween all pair of variables according to the mutual inforamtion estimator \code{estimator}. The results are saved in the mutual information matrix (MIM), a square matrix whose (i,j) element is the mutual information between variables \eqn{X_i}{Xi} and \eqn{X_j}{Xj}. } \details{ \item "mi.empirical" : This estimator computes the entropy of the empirical probability distribution. \item "mi.mm" : This is the Miller-Madow asymptotic bias corrected empirical estimator. \item "mi.shrink" : This is a shrinkage estimate of the entropy of a Dirichlet probability distribution. \item "mi.sg" : This is the Schurmann-Grassberger estimate of the entropy of a Dirichlet probability distribution. } \author{ Patrick E. Meyer, Frederic Lafitte, Gianluca Bontempi } \references{ Patrick E. Meyer, Kevin Kontos, Frederic Lafitte, and Gianluca Bontempi. Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 2007. J. Beirlant, E. J. Dudewica, L. Gyofi, and E. van der Meulen. Nonparametric entropy estimation : An overview. Journal of Statistics, 1997. Jean Hausser. Improving entropy estimation and the inference of genetic regulatory networks. Master thesis of the National Institute of Applied Sciences of Lyon, 2006. } \seealso{\code{\link{clr}}, \code{\link{aracne}}, \code{\link{mrnet}}} \examples{ data(syn.data) #mutual information estimator estimator="mi.empirical" #number of bins used to discretize nb.bins = sqrt(nrow(syn.data)) mim <- build.mim(discretize(syn.data,nbins=nb.bins),estimator) } \keyword{misc}