\name{gene.gene.statistic} \alias{gene.gene.statistic} \title{ Compute gene-gene statistics } \description{ Computes gene gene statistics. } \usage{ gene.gene.statistic(g1, g2, paperLens = paperLen()) } \arguments{ \item{g1}{The Entrez Gene identifier for one of the genes. } \item{g2}{The Entrez Gene identifier for the other gene. } \item{paperLens}{ A vector with the number of citations for each paper. } } \details{ For the two genes identified by their Entrez IDs a number of two-way table statistics, i.e. those computed via \code{\link{twTStats}}, are returned, as are their gene and paper size adjusted variants. } \value{ A list with entries \item{original} The output of \code{\link{twTStats}} on the observed data. \item{gs} The output of \code{\link{twTStats}} on the data scaled for gene size. \item{ps} The output of \code{\link{twTStats}} on the data scaled for paper size. \item{both} The output of \code{\link{twTStats}} on the data scaled for both paper and gene size. } \references{ Testing Gene Associations Using Co-citation, by B. Ding and R. Gentleman. Bioconductor Technical Report, 2004 } \author{ B. Ding and R. Gentleman} \seealso{ \code{\link{twowayTable}} } \examples{ g1 = "10" #Entrez ID for gene 1 g2 = "101" #Entrez ID for gene 2 pLens = paperLen() gene.gene.statistic(g1, g2, pLens) } \keyword{ manip }