\section{Heatmaps of interaction profiles}\label{heatmaps} \subsection{Preliminaries} <>= library("HD2013SGI") data("Interactions",package="HD2013SGI") data("mainEffects",package="HD2013SGI") data("nrOfInteractionsPerTarget",package="HD2013SGI") dir.create(file.path("result","Figures"), recursive=TRUE) @ \subsection{Heatmap of all siRNA profiles} $\pi$-scores were normalized per feature by dividing with the median deviation between two replicates. For each siRNA-pair they were summarized over two replicates. <>= PI = Interactions$piscore for (k in seq_len(dim(PI)[5])) { PI[,,,,k,] = PI[,,,,k,] / Interactions$scale[k] } PI = (PI[,,,,,1]+PI[,,,,,2]) / 2 @ % The \Sexpr{length(dim(PI))}-dimensional array \Robject{PI} was reshaped to a 3-dimensional array by flattening the dimensions of target genes and siRNA designs as well as query genes and their respective siRNA designs. % <>= dim(PI) = c(prod(dim(PI)[1:2]),prod(dim(PI)[3:4]),dim(PI)[5]) dimnames(PI) = list( sprintf("%s_%d",rep(Interactions$Anno$target$Symbol,times=2), rep(seq_len(dim(Interactions$piscore)[2]), each=dim(Interactions$piscore)[1])), sprintf("%s_%d",rep(Interactions$Anno$query$Symbol,times=2), rep(seq_len(dim(Interactions$piscore)[4]), each=dim(Interactions$piscore)[3])), rep(dimnames(Interactions$piscore)[[5]])) @ After this step, the dimension of the array \Robject{PI} was \Sexpr{dim(PI)[1]} target siRNA $\times$ \Sexpr{dim(PI)[2]} query siRNA $\times$ \Sexpr{dim(PI)[3]} phenotypic features. The color scale for interaction scores was limited to the range $[-6,\ldots,6]$. Interaction scores between -2 and 2 are colored black. % <>= cuts = c(-Inf, seq(-6, -2, length.out=(length(HD2013SGI:::colBY)-3)/2), 0, seq( 2, 6, length.out=(length(HD2013SGI:::colBY)-3)/2), +Inf) @ % A heatmap of $\pi$-scores for all siRNA pairs is plotted. <>= pdf(file=file.path("result","Figures","heatmapAll.pdf"),height=14,width=9) @ <>= I = HD2013SGIorderDim(PI,1)$order J = HD2013SGIorderDim(PI,2)$order K = HD2013SGIorderDim(PI,3)$order HD2013SGIHeatmapHuman(x=PI[I,J,K],cuts=cuts,col=HD2013SGI:::colBY, colnames=TRUE,mcol=10,cexcol=0.5,mrow=0) @ <>= dev.off() @ \begin{center} \includegraphics[width=0.5\textwidth]{result/Figures/heatmapAll.pdf} \end{center} \subsection{Heatmap of best correlating siRNA profiles} $\pi$-scores were normalized per feature by dividing by the median deviation between two replicates. For each gene pair $\pi$-scores were summarized over the two replicates and the $2\times 2$ siRNA designs. % <>= PI = Interactions$piscore for (k in seq_len(dim(PI)[5])) { PI[,,,,k,] = PI[,,,,k,] / Interactions$scale[k] } PI = (PI[,,,,,1]+PI[,,,,,2]) / 2 PI = (PI[,1,,1,] + PI[,2,,1,] + PI[,1,,2,] + PI[,2,,2,])/4 @ % Target genes with a minimum of 5 $\pi$-scores with $\left|\pi_{ij}\right|\ge$ 5 were selected. % <>= sel = which(nrOfInteractionsPerTarget >= 5) PI = PI[sel,,] @ % Pearson correlation coefficients were computed comparing interaction profiles between all gene pairs. <>= hcAll = HD2013SGIorderDim(PI,1) dim(PI) = c(dim(PI)[1],prod(dim(PI)[2:3])) dimnames(PI)[[1]] = Interactions$Anno$target$Symbol[sel] C2 = cor(t(PI),use="pairwise.complete") @ % The heatmap of correlation coefficients is plotted. <>= pdf(file.path("result","Figures","heatmapSelection.pdf")) <>= dd = as.dendrogram(hcAll) heatmap.2(C2, col=colorRampPalette(brewer.pal(9,"RdBu"))(255), breaks=seq(-1,1,length.out=256), trace="none",Rowv=dd,Colv=dd) <>= dev.off() @ \begin{center} \includegraphics[width=0.7\textwidth]{result/Figures/heatmapSelection.pdf} \end{center}