## ----include=FALSE------------------------------------------------------- knitr::opts_chunk$set(tidy=FALSE) ## ----style, eval=TRUE, echo=FALSE, results="asis"------------------------ BiocStyle::latex() ## ----eval = FALSE-------------------------------------------------------- ## library("affycoretools") ## pd <- new("AnnotatedDataFrame", ## data = read.table("pdata.txt", header = TRUE, row.names = 1)) ## eset <- affystart(groups = rep(1:4, each = 3), ## groupnames = unique(paste(pData(pd)[,1], ## pData(pd)[,2], sep = "-")), ## phenoData = pd) ## ----echo = FALSE, include=FALSE----------------------------------------- library(affycoretools) load("abatch.Rdata") load("exprSet.Rdata") ## ----hist, fig.cap = "Density plot", echo = FALSE, fig.width = 5, fig.height = 5---- plotHist(dat) ## ----deg, fig.cap = "RNA degradation plot", echo = FALSE, fig.width = 5, fig.height = 5---- plotDeg(dat) ## ----pca, fig.cap = "PCA plot", echo = FALSE, fig.width = 5, fig.height = 5---- pd <- new("AnnotatedDataFrame", data = read.table("pdata.txt", header = TRUE, row.names = 1)) sampleNames(pd) <- sampleNames(eset) plotPCA(eset, groups = rep(1:4, each = 3), groupnames = unique(paste(pData(pd)[,1], pData(pd)[,2], sep = "-"))) phenoData(eset) <- pd ## ----scree, fig.cap = "Screeplot", echo = FALSE, fig.width = 5, fig.height = 5---- plotPCA(eset, screeplot = TRUE) ## ----eval = FALSE-------------------------------------------------------- ## eset1 <- affystart(filenames = list.celfiles()[1:6], ## plot = FALSE, pca = FALSE) ## eset2 <- affystart(filenames = list.celfiles()[7:12], ## plot = FALSE, pca = FALSE) ## eset <- new("ExpressionSet", ## exprs = cbind(exprs(eset1), exprs(eset2)), ## phenoData = pd, ## annotation = annotation(eset1)) ## ------------------------------------------------------------------------ library(genefilter) f1 <- kOverA(3, 6) filt <- filterfun(f1) index <- genefilter(eset, filt) eset <- eset[index,] ## ------------------------------------------------------------------------ library(limma) grps <- paste(pData(eset)[,1], pData(eset)[,2], sep = ".") design <- model.matrix(~ 0 + factor(grps)) colnames(design) <- levels(factor(grps)) ugrps <- unique(grps) contrasts <- matrix(c(1, -1, 0, 0, 0, 0, 1, -1), ncol = 2, dimnames = list(ugrps, paste(ugrps[c(1,3)], ugrps[c(2,4)], sep = " - "))) fit <- lmFit(eset, design) fit2 <- contrasts.fit(fit, contrasts) fit2 <- eBayes(fit2) ## ------------------------------------------------------------------------ design contrasts ## ----venn, fig.cap = "Venn Diagram"-------------------------------------- rslt <- decideTests(fit2) vc <- vennCounts2(rslt, method = "same") vennDiagram(vc, cex = 0.8) ## ----eval = FALSE-------------------------------------------------------- ## vennSelect(eset, design, rslt, contrasts, fit2) ## ----eval = FALSE-------------------------------------------------------- ## limma2annaffy(eset, fit2, design, ## contrasts, annotation(eset), ## pfilt = 0.05) ## ----eval = FALSE-------------------------------------------------------- ## index1 <- vennSelect(x = rslt, indices.only = TRUE)[[3]] ## probids <- unique(getLL(featureNames(eset)[index1], ## annotation(eset))) ## univ <- unique(getLL(featureNames(eset), ## annotation(eset))) ## params <- new("GOHyperGParams", geneIds = probids, ## universeGeneIds = univ, ## annotation = annotation(eset), ## conditional = TRUE, ontology = "MF") ## hyp <- hyperGTest(params) ## htmlReport(hyp, file = "GO MF terms.html", ## categorySize = 10) ## ----sessioninfo, echo=FALSE, results="markup", comment=NA--------------- sessionInfo()