Package ‘genoset’

April 5, 2014
Type Package
Title Provides classes similar to ExpressionSet for copy number analysis
Version 1.14.0
Date 2011-01-15
Author Peter M. Haverty
Maintainer Peter M. Haverty <phaverty@gene.com>

Description Load, manipulate, and plot copynumber and BAF data. GenoSet class
extends eSet by adding a ““locData" slot for a RangedData or GRanegs object.
This object contains feature genome location data and provides for
efficient subsetting on genome location. CNSet and BAFSet extend GenoSet
and require assayData matrices for Copy Number (cn) or Log-R Ratio (lrr)
and B-Allele Frequency (baf) data. Implements and provides convenience
functions for processing of copy number and B-Allele Frequency data.

License Artistic-2.0

LazyLoad yes

Depends R (>=2.10), BiocGenerics (>= 0.1.6), Biobase (>=2.15.1),IRanges, GenomicRanges
Imports methods, graphics, IRanges, GenomicRanges

Suggests RUnit, DNAcopy, stats, BSgenome, Biostrings

Enhances parallel

biocViews Infrastructure, DataRepresentation, Microarray, SNP,CopyNumber Variants

Collate 'genoset-class.R' 'cnset-class.R' 'bafset-class.R'
'DataFrame-methods.R' 'test_genoset_package.R' utils.R’
'ordering.R' 'segments.R' 'bounds.R' 'plots.R’

ByteCompile TRUE

2 R topics documented:

R topics documented:

genoset-package 3
baf . . . e 3
baf2mbaf 4
BAFSet e 5
BAFSet-class 6
BAFSet.to.ExpressionSets 7
boundinglndices 8
boundinglndices2 9
boundinglndicesByChr 10
bounds2Rle L 11
calcGC . . . e 12
chr . . . e 12
chrindices e 13
chrinfo. e 14
chrNames e 14
chrOrder e 15
CIL ot v et e e e e e 16
Cn2lr . . . e 16
CNSet . . . e 17
CNSet-class o e e 18
colMeans e e 19
colnames 19
featureNames L 20
IXSEENAS . . . e e 20
GCCOITECE v o e e e e e e e 21
GEMOME .« . v v v v e 21
GENOMEAXIS .« . . v v v et e e e e e 22
genoPlot Lo 23
genoPos . .. L L e 24
GenoSet e 25
GenoSet-class e 26
genoset-datasets 28
genoset-defunct L 28
genoset-deprecated Lo e 29
INtGenoSet e 29
isGenomeOrder e e 30
locData e 31
Ir2cn . . . e 31
Ier .o e 32
modeCenter e e e e 33
POS - o o 33
rangeColMeans e e e e e e e e e 34
rangeSampleMeans L e e 35
rangeSegMeanlengtho oL 36
readGenoSet e e e 36

runCBS . . . e 37

genoset-package 3

segPairTable e 38
SEES2GIANEES . . ¢ .t e e e e e e e e e e e e e e e e e e e 39
segs2RangedData L 40
segs2Rle 41
segs2RleDataFrame 42
segTable L 43
ShOW . . L L e 44
SEATT e e e e e 44
subsetAssayData 45
toGenomeOrder e e e 46

Index 48

genoset-package GenoSet: An eSet for data with genome locations
Description

Load, manipulate, and plot copynumber and BAF data. GenoSet class extends eSet by adding a
"locData" slot for a GenomicRanges object. This object contains feature genome location data
and provides for efficient subsetting on genome location. Genoset also implements an number of
convenience functions for processing of copy number and B-Allele Frequency data and for working
with segmented data.

See Also

genoset-datasets GenoSet

baf

Get baf data

Description

Get or Set the baf assayData slot

Arguments

object A BAFset object

Details

Get or Set the baf assayData slot

Value

matrix

4 baf2mbaf

Author(s)

Peter M. Haverty

baf2mbaf Calculate mBAF from BAF

Description

Calculate Mirrored B-Allele Frequence (mBAF) from B-Allele Frequency (BAF) as in Staaf et al.,
Genome Biology, 2008. BAF is converted to mBAF by folding around 0.5 so that is then between
0.5 and 1. HOM value are then made NA to leave only HET values that can be easily segmented.
Values > hom.cutoff are made NA. Then, if genotypes (usually from a matched normal) are provided
as the matrix ’calls’ additional HOMs can be set to NA. The argument ’call.pairs’ is used to match
columns in ’calls’ to columns in ’baf’.

Usage

baf2mbaf (baf, hom.cutoff = 0.95, calls = NULL,
call.pairs = NULL)

Arguments
baf numeric matrix of BAF values
hom. cutoff numeric, values above this cutoff to be made NA (considered HOM)
calls matrix of NA, CT, AG, etc. genotypes to select HETs (in normals). Dimnames
must match baf matrix.
call.pairs list, names represent target samples for HOMs to set to NA. Values represent
columns in "calls" matrix.
Value

numeric matix of mBAF values

Author(s)

Peter M. Haverty

Examples
data(genoset)
mbaf = baf2mbaf(genoset.ds[, , "baf”], hom.cutoff=0.9)

calls = matrix(sample(c("AT","AA","CG","GC","AT","GG"), (nrow(genoset.ds) * 2),replace=TRUE),ncol=2,dimnames=1:
mbaf = baf2mbaf(genoset.ds[, , "baf”], hom.cutoff=0.9, calls = calls, call.pairs = list(K="L",L="L")) # Sample |
genoset.ds[, ,"mbaf"] = baf2mbaf(genoset.ds[, , "baf”"], hom.cutoff=0.9) # Put mbaf back into the BAFSet object &

BAFSet

BAFSet

Create a BAFSet object

Description

This function is the preferred method for creating a new BAFSet object. Users are generally dis-
couraged from calling "new" directly. This BAFSet function enforces the requirement for "lrr"
and "baf" matrices. These and any other "..." arguments will become part of the assayData slot of
the resulting object. "..." can be matrices or DataFrame objects (from the IRanges package). This
function passes control to the "initGenoSet" method which performs argument checking including
dimname matching among relevant slots and sets everything to genome order. Genome order can
be disrupted by "[" or "[[" calls and will be checked by methods that require it.

Usage

BAFSet(locData, lrr = NULL, baf = NULL, pData = NULL,

annotation =

Arguments

locData

lrr

baf

pData
annotation

universe

assayData

Details

nn

, universe, assayData = NULL, ...)

A GRanges or RangedData object specifying feature chromosome locations.
featureNames (names or rownames) are required to match featureNames of as-
sayData.

numeric matrix of copy number data with rownames matching featureNames
and colnames matching sampleNames

numeric matrix of B-Allele Frequency data with rownames matching feature-
Names and colnames matching sampleNames

A data frame with rownames matching all data matrices
character, string to specify chip/platform type

character, a string to specify the genome universe for locData. Overrides any
universe/genome data in locData.

assayData, usually an environment

More matrix or DataFrame objects to include in assayData slot

The BAFSet class is defunct. Please use GenoSet. BAFSet only added the baf/lrr getter/setter
functions, which are redundant with x[, , ’baf’] and x|, , ’lrr’] now.

Value

A BAFSet object

Author(s)

Peter M. Haverty

BAFSet-class

See Also

bafset-class, genoset-class

BAFSet-class Class "BAFSet"

Description

A BAFSet is and extension of GenoSet that requires "baf” and ’lrr” assayData element

Objects from the Class

Objects can be created by calls of the form new(”"BAFSet”, assayData, phenoData, featureData, experimentData, an
However, as per BioConductor standard practice the object creation function BAFSet is recom-

mended.

Slots
locData: Object of class "GenomicRangesOrRangedData" Feature locations on the genome
assayData: Object of class "AssayData” ~~
phenoData: Object of class "AnnotatedDataFrame"” ~~
featureData: Object of class "AnnotatedDataFrame"” ~~
experimentData: Object of class "MIAXE" ~~
annotation: Object of class "character” ~~
protocolData: Object of class "AnnotatedDataFrame” ~~

.__classVersion__: Object of class "Versions"” ~~

Extends

Class "GenoSet"”, directly. Class "eSet", by class "GenoSet", distance 2.

Methods
show signature(object = "BAFSet”): ...
baf signature(object = "BAFSet"): Getter for baf’ assayDataElement
baf<- signature(object = "BAFSet"”, value = "matrix"): setter for 'baf’ assayDataElement
genoPlot signature(x = "BAFSet”, y = "ANY"): Plot data along the genome. Defaults to ’Irr’
assayDataElement.
Irr signature(object = "BAFSet"): Getter for 'lrr’ assayDataElement

Irr<- signature(object = "BAFSet”, value = "matrix"): Setter for ’lrr’ assayDataElement

Author(s)

Peter M. Haverty <phaverty@gene.com>

BAFSet.to.ExpressionSets 7
See Also

BAFSet, CNSet, GenoSet

Examples

showClass("BAFSet")

BAFSet.to.ExpressionSets
Make a pair of ExpressionSets from a BAFSet

Description

Often it is convenient to have a more standard "ExpressionSet" rather than a BAFSet. For exam-
ple, when using infrastructure dependent on the ExpressionSet slots, like limma or ExpressionSe-
tOnDisk. This will create a list of two ExpressionSets, one each for the baf and Irr data. To make a
single ExpressionSet, with the Irr data in the exprs slot and the baf data as an additional member of
assayData, use the standard coercion eset = as(bafset,"ExpressionSet").

Usage

BAFSet.to.ExpressionSets(bs)

Arguments

bs A BAFset object

Details

BAFSEt.toExpressionSets has been defunct. Please use as(x, ’ExpressionSet’).

Value

A list with one ExpressionSet each for the baf and Irr data in the BAFSet object

Author(s)

Peter M. Haverty

8 boundingIndices

boundingIndices Find indices of features bounding a set of chromosome ranges/genes

Description

This function is similar to findOverlaps but it guarantees at least two features will be covered. This is
useful in the case of finding features corresponding to a set of genes. Some genes will fall entirely
between two features and thus would not return any ranges with findOverlaps. Specifically, this
function will find the indices of the features (first and last) bounding the ends of a range/gene (start
and stop) such that first <= start < stop <= last. Equality is necessary so that multiple conversions
between indices and genomic positions will not expand with each conversion. Ranges/genes that
are outside the range of feature positions will be given the indices of the corresponding first or last
index rather than 0 or n + 1 so that genes can always be connected to some data.

Usage

boundingIndices(starts, stops, positions,
valid.indices = TRUE, all.indices = FALSE, offset = 0)

Arguments
starts integer vector of first base position of each query range
stops integer vector of last base position of each query range
positions Base positions in which to search

valid.indices logical, TRUE assures that the returned indices don’t go off either end of the
array, i.e. 0 becomes 1 and n+1 becomes n

offset integer, value to add to all returned indices. For the case where positions repre-
sents a portion of some larger array (e.g. a chr in a genome)
all.indices logical, return a list containing full sequence of indices for each query
Details

This function uses some tricks from findIntervals, where is for k queries and n features it is O(k
* log(n)) generally and ~O(k) for sorted queries. Therefore will be dramatically faster for sets of
query genes that are sorted by start position within each chromosome. The index of the stop position
for each gene is found using the left bound from the start of the gene reducing the search space for
the stop position somewhat. This function has important differences from boundingIndices2, which
uses findInterval: boundingIndices does not check for NAs or unsorted data in the subject positions.
Also, the positions are kept as integer, where boundingIndices2 (and findInterval) convert them
to doubles. These assumptions are safe for position info coming from a GenoSet, GRanges, or
RangedData.

Value

integer matrix of 2 columms for start and stop index of range in data or a list of full sequences of
indices for each query (see all.indices argument)

boundingIndices2 9

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Other "range summaries": boundingIndices2, boundingIndicesByChr, rangeColMeans, rangeSampleMeans

Examples

starts = seq(10,100,10)
boundingIndices(starts=starts, stops=starts+5, positions = 1:100)

boundingIndices?2 Find indices of features bounding a set of chromosome ranges/genes

Description

This function is similar to findOverlaps but it guarantees at least two features will be covered. This is
useful in the case of finding features corresponding to a set of genes. Some genes will fall entirely
between two features and thus would not return any ranges with findOverlaps. Specifically, this
function will find the indices of the features (first and last) bounding the ends of a range/gene (start
and stop) such that first <= start <= stop <= last. Equality is necessary so that multiple conversions
between indices and genomic positions will not expand with each conversion. This function uses
findIntervals, which is for k queries and n features is O(k * log(n)) generally and ~O(k) for sorted
queries. Therefore will be dramatically faster for sets of query genes that are sorted by start position
within each chromosome. This should give performance for k genes and n features that is ~O(k)
for starts and O(k * log(n)) for stops and ~O(k * log(n)) overall. Ranges/genes that are outside the
range of feature positions will be given the indices of the corresponding first or last index rather
than O or n + 1 so that genes can always be connected to some data.

Usage

boundingIndices2(starts, stops, positions, offset = NULL)

Arguments
starts numeric or integer, first base position of each query range
stops numeric or integer, last base position of each query range
positions Base positions in which to search
offset integer, value to add to all returned indices. For the case where positions repre-
sents a portion of some larger array (e.g. a chr in a genome)
Value

integer matrix of 2 columms for start and stop index of range in data

10 boundingIndicesByChr

Author(s)

Peter M. Haverty

See Also

Other "range summaries": boundingIndices, boundingIndicesByChr, rangeColMeans, rangeSampleMeans

Examples

starts = seq(10,100,10)
boundingIndices2(starts=starts, stops=starts+5, positions = 1:100)

boundingIndicesByChr Find indices of features bounding a set of chromosome ranges/genes,
across chromosomes

Description

Finds subject ranges corresponding to a set of genes (query ranges), taking chromosome into ac-
count. Specifically, this function will find the indices of the features (first and last) bounding the
ends of a range/gene (start and stop) such that first <= start < stop <= last. Equality is necessary
so that multiple conversions between indices and genomic positions will not expand with each con-
version. Ranges/genes that are outside the range of feature positions will be given the indices of
the corresponding first or last index on that chromosome, rather than 0 or n + 1 so that genes can
always be connected to some data. Checking the left and right bound for equality will tell you when
a query is off the end of a chromosome.

Usage
boundingIndicesByChr(query, subject)

Arguments
query GRanges or something coercible to GRanges
subject RangedData

Details

This function uses some tricks from findIntervals, where is for k queries and n features it is O(k
* log(n)) generally and ~O(k) for sorted queries. Therefore will be dramatically faster for sets of
query genes that are sorted by start position within each chromosome. The index of the stop position
for each gene is found using the left bound from the start of the gene reducing the search space for
the stop position somewhat.

This function differs from boundingIndices in that 1. it uses both start and end positions for the
subject, and 2. query and subject start and end positions are processed in blocks corresponding to
chromosomes.

Both query and subject must be in at least weak genome order (sorted by start within chromosome
blocks).

bounds2RlIe 11

Value

integer matrix with two columns corresponding to indices on left and right bound of queries in
subject

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Other "range summaries": boundingIndices, boundingIndices2, rangeColMeans, rangeSampleMeans

bounds2Rle Convert bounding indices into a Rle

Description

Given a matrix of first/last indices, like from boundingIndicesByChr, and values for each range,
convert to a Rle. This function takes the expected length of the Rle, n, so that any portion of the full
length not covered by a first/last range will be a run with the value NA. This is typical in the case
where data is segmented with CBS and some of the data to be segmented is NA.

Usage

bounds2Rle(bounds, values, n)

Arguments
bounds matrix, two columns, with first and last index, like from boundingIndicesByChr
values ANY, some value to be associated with each range, like segmented copy number.
n integer, the expected length of the Rle, i.e. the number of features in the genome/target
ranges processed by boundingIndicesByChr.
Value
Rle
Author(s)

Peter M. Haverty

See Also

Other "segmented data": rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2Granges, segs2RangedData, segs2Rle,
segs2RleDataFrame, segTable, segTable, segTable

12 chr

calcGC Calculate GC Percentage in windows

Description

Local GC content can be used to remove GC artifacts from copynumber data see Diskin, 2008). This
function will calculate GC content fraction in expanded windows around a set of ranges follow-
ing example in http://www.bioconductor.org/help/course-materials/2012/useR2012/Bioconductor-
tutorial.pdf. Currently all ranges are tabulated, later I may do letterFrequencyInSlidingWindow for
big windows and then match to the nearest.

Usage

calcGC(object, bsgenome, expand = 1e+06)

Arguments
object GenomicRanges, GenoSet, or RangedData
bsgenome BSgenome, like Hsapiens from BSgenome.Hsapiens.UCSC.hg19
expand scalar integer, amount to expand each range before calculating gc
Value

numeric vector, fraction of nucleotides that are G or C in expanded ranges of object

Examples

Not run: data(genoset)
Not run: library(BSgenome.Hsapiens.UCSC.hg19)
Not run: gc = calcGC(genoset.ds, Hsapiens)

chr Look up chromosome for each feature

Description

Chromosome name for each feature

Arguments

object GRanges, RangedData or GenoSet

Details

Get chromosome name for each feature. Returns character, not the factor ’space’.

chrindices 13

Value

character vector of chromosome positions for each feature

Author(s)

Peter Haverty

Examples

data(genoset)
chr(genoset.ds) # c("chr1”,"chr1”,”chr1”,"chr1”,"chr3”,"chr3”,"chrX”,"chrX","chrX","chrx")
chr(locData(genoset.ds)) # The same

chrindices Get a matrix of first and last index of features in each chromosome

Description

Sometimes it is handy to know the first and last index for each chr. This is like chrInfo but for
feature indices rather than chromosome locations. If chr is specified, the function will return a
sequence of integers representing the row indices of features on that chromosome.

Arguments
object GenoSet, RangedData, or GRanges
chr character, specific chromosome name
Value

data.frame with "first" and "last" columns

Author(s)

Peter M. Haverty

Examples

data(genoset)
chrindices(genoset.ds)
chrindices(locData(genoset.ds)) # The same

14 chrNames

chrinfo Chromosome Information

Description

Get chromosome start and stop positions

Arguments

object A GenoSet object or similar

Details

Provides a matrix of start, stop and offset, in base numbers for each chromosome.

Value

list with start and stop position, by ordered chr

Author(s)

Peter Haverty

Examples

data(genoset)
chrinfo(genoset.ds)
chrinfo(locData(genoset.ds)) # The same

chrNames Get list of unique chromosome names

Description

Get list of unique chromosome names

Arguments

object RangedData or GenoSet

Value

character vector with names of chromosomes

Author(s)
Peter M. Haverty

chrOrder 15

Examples

data(genoset)
chrNames(genoset.ds) # c("chr1”,"chr3”,"chrX")
chrNames(locData(genoset.ds)) # The same

chrNames(genoset.ds) = sub(”*chr”,"" chrNames(genoset.ds))
chrOrder Order chromosome names in proper genome order
Description

Chromosomes make the most sense orded by number, then by letter.

Usage

chrOrder(chr.names)

Arguments

chr.names character, vector of unique chromosome names

Value

character vector of chromosome names in proper order

Author(s)

Peter M. Haverty

See Also
Other "genome ordering": isGenomeOrder, isGenomeOrder, isGenomeOrder, toGenomeOrder,

toGenomeOrder, toGenomeOrder, toGenomeOrder

Examples

chrOrder(c("chr5”,"chrX","chr3”,"chr7”,"chrY")) # c("chr3”,"chr5"”,"chr7"”,"chrX”,"chrY")

16 cn2lr

cn Get or Set the cn assayData slot

Description

Get or Set the cn assayData slot

Arguments

object A BAFset object

Value

matrix

Author(s)
Peter M. Haverty

cn2lr Take vector or matrix of copynumber values, convert to log2ratios
Utility function for converting copynumber units (2 is normal) to
log2ratio units (two is normal)

Description

Take vector or matrix of copynumber values, convert to log2ratios Utility function for converting
copynumber units (2 is normal) to log2ratio units (two is normal)

Usage
cn2lr(x)

Arguments

X numeric data in copynumber units

Value

data of same type as "x" transformed into log2ratio units

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Ir2¢cn

CNSet 17

CNSet Create a CNSet object

Description

This function is the preferred method for creating a new CNSet object. Users are generally discour-
aged from calling "new" directly. This CNSet function enforces the requirement for a "cn" matrix.
This and any other "..." arguments will become part of the assayData slot of the resulting object.
"..." can be matrices or DataFrame objects (from the IRanges package). This function passes con-
trol to the "initGenoSet" method which performs argument checking including dimname matching
among relevant slots and sets everything to genome order. Genome order can be disrupted by "[" or
"[[" calls and will be checked by methods that require it.

Usage
CNSet(locData, cn = NULL, pData = NULL, annotation = "",
universe, assayData = NULL, ...)
Arguments
locData A GRanges or RangedData object specifying feature chromosome locations.
featureNames (names or rownames) are required to match featureNames of ma-
trices.
cn numeric matrix of copy number data with rownames matching featureNames
and colnames matching sampleNames
pData A data frame with rownames matching all data matrices
annotation character, string to specify chip/platform type
universe character, string to specify genome universe for locData. Overrides any uni-

verse/genome data in locData.
assayData assayData, usually an environment

More matrix or DataFrame objects to include in assayData

Details

The CNSet class is defunct. Please use GenoSet. CNSet only added the cn getter/setter functions,
which are redundant with x[, , >cn’] now.

Value

A CNSet object

Author(s)
Peter M. Haverty

18 CNSet-class

CNSet-class Class "CNSet"

Description

A CNSet is an extension of GenoSet that requires a ’cn’ assayData element.

Objects from the Class

Objects can be created by calls of the form new("CNSet"”, assayData, phenoData, featureData, experimentData, anr
However, as per BioConductor standard practice the object creation function CNSet is recom-
mended.

Slots

locData: Object of class "RangedDataOrGenomicRanges" Feature locations on the genome.
assayData: Object of class "AssayData” From eSet

phenoData: Object of class "AnnotatedDataFrame” From eSet

featureData: Object of class "AnnotatedDataFrame"” From eSet

experimentData: Object of class "MIAXE" From eSet

annotation: Object of class "character” From eSet

protocolData: Object of class "AnnotatedDataFrame” From eSet

.__classVersion__: Object of class "Versions"” From eSet

Extends

Class "GenoSet", directly. Class "eSet", by class "GenoSet", distance 2.

Methods
show signature(object = "CNSet"): ...
cn signature(object = "CNSet"): Getter for cn assayDataElement
cn<- signature(object = "CNSet”, value = "matrix"): Setter for ’cn’ assayDataElement
genoPlot signature(x = "CNSet”, y = "ANY"): Plot data along the genome. Defaults to ’cn’
assayDataElement
Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also
CNSet, GenoSet, BAFSet

Examples

showClass("CNSet")

colMeans 19

colMeans Means of columns

Description

Calculate means of columns of a DataFrame as if it were a matrix. Allow colmeans in rangeSam-
pleMeans for DataTable just like a real matrix. I’'m sure there is much more clever way to do this
using aggregate.

Arguments
X DataFrame
na.rm logical
dims integer
Author(s)

Peter M. Haverty

Examples

df.ds = DataFrame(a = Rle(c(5,4,3),c(2,2,2)), b = Rle(c(3,6,9),c(1,1,4)))
mat.ds = matrix(c(5,5,4,4,3,3,3,6,9,9,9,9), ncol=2, dimnames=1list(NULL,c("a","b")))
Not run: identical(colMeans(df.ds), colMeans(mat.ds))

colnames Get colnames from a GenoSet

Description

Get colnames from a GenoSet

Arguments

object GenoSet

Value

character vector with names of samples

Examples

data(genoset)
head(colnames(genoset.ds))

20

fixSegNAs

featureNames Get rownames from RangedData, GRanges, or GenoSet

Description

Get rownames from RangedData, GRanges, or GenoSet.

Arguments

object GRanges, RangedData, or GenoSet

Value

character vector with names rows/features

Author(s)
Peter M. Haverty

Examples

data(genoset)
head(rownames(locData.gr))
head(rownames(genoset.ds))

fixSegNAs Fix NA runs in a Rle

Description

Fix NA runs in a Rle when the adjacent runs have equal values

Usage

fixSegNAs(x, max.na.run = 3)

Arguments

X Rle to be fixed

max.na.run integer, longest run of NAs that will be fixed

Value

Rle

Author(s)
Peter M. Haverty

gcCorrect 21

gcCorrect Correct copy number for GC content

Description

Copy number estimates from various platforms show "Genomic Waves" (Diskin et al., Nucleic
Acids Research, 2008) where copy number trends with local GC content. This function regresses
copy number on GC percentage and removes the effect (returns residuals). GC content should be
smoothed along the genome in wide windows >= 100kb.

Usage

gcCorrect(ds, gc, retain.mean = TRUE)

Arguments
ds numeric matrix of copynumber or log2ratio values, samples in columns
gc numeric vector, GC percentage for each row of ds, must not have NAs
retain.mean logical, center on zero or keep same mean?

Value

numeric matrix, residuals of ds regressed on gc

Author(s)
Peter M. Haverty

Examples

gc = runif(n=100, min=1, max=100)
ds = rnorm(100) + (0.1 * gc)
gcCorrect(ds, gc)

genome Get and set the genome universe annotation.

Description

Genome version

Arguments

X GenoSet

22 genomeAXxis

Details
The genome positions of the features in locData. The UCSC notation (e.g. hg18, hgl9, etc.) should
be used.

Value

character, e.g. hg19

Author(s)

Peter M. Haverty

Examples

data(genoset)
genome (genoset.ds)
genome (genoset.ds) = "hgl9”

genomeAxis Label axis with base pair units

Description

Label an axis with base positions

Usage
genomeAxis(locs = NULL, side = 1, log = FALSE,
do.other.side = TRUE)

Arguments

locs RangedData to be used to draw chromosome boundaries, if necessary. Usually

locData slot from a GenoSet.
side integer side of plot to put axis
log logical Is axis logged?

do.other.side logical, label non-genome side with data values at tick marks?

Details

Label a plot with Mb, kb, bp as appropriate, using tick locations from axTicks

Value

nothing

genoPlot 23

Author(s)
Peter M. Haverty

See Also

Other "genome plots": genoPlot, genoPlot, genoPlot, genoPlot

Examples

data(genoset)
genoPlot(genoPos(genoset.ds), genoset.ds[,1, "baf"])
genomeAxis(locs=locData(genoset.ds)) # Add chromosome names and boundaries to a plot assuming genome along x-ax
genomeAxis(locs=locData(genoset.ds), do.other.side=FALSE) # As above, but do not label y-axis with data values &

genomeAxis () # Add nucleotide position in sensible units assuming genome along x-axis
genoPlot Plot data along the genome
Description

Plot location data and chromosome boundaries from a GenoSet, RangedData, or GRanges object
against data from a numeric or Rle. Specifying a chromosome name and optionally a "xlim’ will
zoom into one chromosome region. If more than one chromosome is present, the chromosome
boundaries will be marked. Alternatively, for a numeric x and a numeric or Rle y, data in y can be
plotted at genome positions X. In this case, chromosome boundaries can be taken from the argument
locs. If data for y-axis comes from a Rle lines are plotted representing segments. X-axis tickmarks
will be labeled with genome positions in the most appropriate units.

Arguments
X GenoSet (or descendant), RangedData, or GRanges
y numeric or Rle
locs RangedData, like locData slot of GenoSet
chr Chromosome to plot, NULL by default for full genome
add Add plot to existing plot
x1lab character, label for x-axis of plot
ylab character, label for y-axis of plot
col character, color to plot lines or points
lwd numeric, line width for segment plots from an Rle
pch character or numeric, printing character, see points
x1lim integer, length two, bounds for genome positions. Used in conjunction with

"chr" to subset data for plotting.
Additional plotting args

24 genoPos

Value
nothing
Methods
signature(x = "RangedDataOrGenoSetOrGenomicRanges"”, y = "ANY") Plot feature locations
and data from one sample.
signature(x = "numeric”, y = "numeric”) Plot numeric location and a vector of numeric
data.
signature(x = "numeric”, y = "Rle"”) Plot numeric location and a vector of Rle data. Uses
lines for Rle runs.
Author(s)

Peter M. Haverty

See Also

Other "genome plots": genomeAxis

Examples

data(genoset)

genoPlot(x=genoset.ds,y=genoset.ds[,1,"1lrr"])

genoPlot(genoPos(genoset.ds), genoset.ds[,1,"1rr"], locs=locData(genoset.ds)) # The same
genoPlot(1:10, Rle(c(rep(0,5),rep(3,4),rep(1,1))))

genoPos Convert chromosome positions to positions from start of genome

Description

Get base positions of features in genome-scale units

Arguments

object A GenoSet object or a RangedData object

Details
Get base positions of array features in bases counting from the start of the genome. Chromosomes
are ordered numerically, when possible, then lexically.

Value

numeric position of each feature in whole genome units, in original order

GenoSet 25

Author(s)

Peter M. Haverty

Examples

data(genoset)
head(genoPos(genoset.ds))
head(genoPos(locData(genoset.ds))) # The same

GenoSet Create a GenoSet object

Description

This function is the preferred method for creating a new GenoSet object. Users are generally dis-
couraged from calling "new" directly. Any "..." arguments will become part of the assayData slot
of the resulting object. "..." can be matrices or DataFrame objects (from IRanges). This function
passes control to the "initGenoSet" method which performs argument checking including dimname
matching among relevant slots and sets everything to genome order. Genome order can be disrupted
by "[" calls and will be checked by methods that require it.

Usage
GenoSet(locData, pData = NULL, annotation = "", universe,
assayData = NULL, ...)

Arguments

locData A RangedData object specifying feature chromosome locations. Rownames are

required to match featureNames.

pData A data frame with rownames matching all data matrices

annotation character, string to specify chip/platform type

universe character, a string to specify the genome universe for locData

assayData assayData, usually an environment

More matrix or DataFrame objects to include in assayData

Value

A GenoSet object

Author(s)

Peter M. Haverty

26 GenoSet-class

Examples

test.sample.names = LETTERS[11:13]

probe.names = letters[1:10]

gs = GenoSet(
locData=GRanges(ranges=IRanges(start=1:10,width=1,names=probe.names), segnames=c(rep(”"chri1”,4),rep("chr3”,2),
cn=matrix(31:60,nrow=10,ncol=3,dimnames=1ist(probe.names, test.sample.names)),
pData=data.frame(matrix (LETTERS[1:15],nrow=3,ncol=5,dimnames=1ist(test.sample.names,letters[1:5]))),
annotation="SNP6"

GenoSet-class Class "GenoSet"

Description

GenoSet extends eSet by adding genome location information in the form of the locData slot.
GenoSet uses this location information to allow quick subsetting and summarization by a set of
genome locations (RangedData or GRanges). GenoSet implements and extends the RangedData/GRanges
API for access to the underlying location information.

Objects from the Class

Objects can be created by calls of the form new("”GenoSet”, assayData, phenoData, featureData, experimentData, a
However, as per BioConductor standard practice the object creation function GenoSet is recom-
mended.

Slots

locData: Object of class "RangedDataOrGenomicRanges"” Locations of features on the genome
assayData: Object of class "AssayData” From eSet

phenoData: Object of class "AnnotatedDataFrame"” From eSet

featureData: Object of class "AnnotatedDataFrame” From eSet

experimentData: Object of class "MIAXE" From eSet

annotation: Object of class "character” From eSet

protocolData: Object of class "AnnotatedDataFrame” From eSet

.__classVersion__: Object of class "Versions"” From eSet

Extends

Class "eSet", directly.

GenoSet-class 27

Methods

[signature(x = "GenoSet”, i = "ANY", j = "ANY", drop = "ANY"): ...

[signature(x = "GenoSet"”, i = "character”, j = "ANY", drop = "ANY"): ...
[signature(x = "GenoSet”, i = "RangedData”, j = "ANY"”, drop = "ANY"): ...
[<- signature(x = "GenoSet”, i = "ANY", j = "ANY", value = "ANY"): ...
chr signature(object = "GenoSet"): ...

chrNames signature(object = "GenoSet"): ...

elementLengths signature(x = "GenoSet"): ...

featureNames signature(object = "GenoSet"): ...
featureNames<- signature(object = "GenoSet"): ...
sampleNames signature(object = "GenoSet"): ...
dim signature(object = "GenoSet"): ...

genoPlot signature(x = "GenoSet”, y = "ANY"): ...

locData signature(object = "GenoSet"”): ...

locData<- signature(object = "GenoSet”, value = "RangedData”): ...
names signature(x = "GenoSet"): ...

ranges signature(x = "GenoSet"): ...

show signature(object = "GenoSet"): ...

toGenomeOrder signature(ds = "GenoSet"): ...

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

GenoSet, CNSet, BAFSet

Examples

showClass("GenoSet")

test.sample.names = LETTERS[11:13]

probe.names = letters[1:10]

gs = GenoSet(
locData=GRanges(ranges=IRanges(start=1:10,width=1,names=probe.names), segnames=c(rep(”"chri1”,4),rep("chr3”,2),
cn=matrix(31:60,nrow=10,ncol=3,dimnames=1list(probe.names, test.sample.names)),
pData=data.frame(matrix (LETTERS[1:15],nrow=3,ncol=5,dimnames=1ist(test.sample.names,letters[1:5]))),
annotation="SNP6"

28 genoset-defunct

genoset-datasets Example GenoSet, BAFSet, and CNSet objects and the data to create
them.

Description

Fake LRR, BAF, pData and location data were generated and saved as fake.lrr, fake.cn, fake.baf,
fake.pData and locData.rd. These were used to construct the objects genoset.ds, baf.ds, and cn.ds

Usage

data(genoset)

Format

fake.lrr A matrix with some randomly generated LRR (log2ratio copynumber) data
fake.cn A matrix with some randomly generated LRR (log2ratio copynumber) data
fake.baf A matrix with some randomly generated BAF (B-Allele Frequency) data
fake.pData A data.frame of sample annotation to go with fake.lrr and fake.baf

locData.gr A GRanges object describing the genomic locations of the probes in fake.baf and
fake.lrr

genoset.ds A GenoSet object created with fake.lrr as the "foo" element, locData.rd as the locData,
and fake.pData as the phenoData

Source

Fake data generated using rnorm and the like.

genoset-defunct Defunct genoset features

Description

The CNSet and BAFSet classes are defunct. They only really added getter/setter methods for spe-
cific assayDataFlements, so they are now redundant with the preferred method of using the as-
sayDataElement name as the third argument to bracket, e.g. x[i, j, "lrr"]. Accordingly
BAFSet.to.ExpressionSets is also defunct.

Details

Additionally, names, ranges, and space on a GenoSet are also defunct. In an effort to make a con-
sistent API for either RangedData or GRanges in the locData slot, we recommend using chrNames
for names and chr for space.

genoset-deprecated 29

genoset-deprecated Deprecated genoset features

Description

GenoSet is moving towards using GenomicRanges instead of RangedData. We are also getting rid
of dependencies on eSet for a potential switch to an underlying SummarizedExperiment.

initGenoSet Create a GenoSet or derivative object

Description

This function is the preferred method for creating a new GenoSet object. Users are generally dis-
couraged from calling "new" directly. The "..." argument is for any number of matrices of matching
size that will become part of the assayData slot of the resulting object. This function passes control
to the "genoSet" object which performs argument checking including dimname matching among
relevant slots and sets everything to genome order. Genome order can be disrupted by "[" calls and
will be checked by methods that require it.

Usage
initGenoSet(type, locData, pData = NULL, annotation = "",
universe, assayData = NULL, ...)
Arguments
type character, the type of object (e.g. GenoSet, BAFSet, CNSet) to be created
locData A GRanges or RangedData object specifying feature chromosome locations.
rownames are required to match assayData.
pData A data frame with rownames matching colnames of all assayDataElements
annotation character, string to specify chip/platform type
universe character, a string to specify the genome universe for locData, overrides uni-

verse/genome data in locData
assayData assayData, usually an environment

More matrix or DataFrame objects to include in assayData

Value

A GenoSet object or derivative as specified by "type" arg

Author(s)
Peter M. Haverty

30 isGenomeOrder

Examples

test.sample.names = LETTERS[11:13]
probe.names = letters[1:10]
gs = GenoSet(
locData=GRanges(ranges=IRanges(start=1:10,width=1,names=probe.names), seqnames=c(rep(”chr1”,4),rep("chr3”,2)
cn=matrix(31:60,nrow=10,ncol=3,dimnames=1ist(probe.names, test.sample.names)),
pData=data.frame(matrix (LETTERS[1:15],nrow=3,ncol=5,dimnames=1ist(test.sample.names,letters[1:5]))),
annotation="SNP6"

isGenomeOrder Check if a GRanges, GenoSet or RangedData is in genome order

Description

Checks that rows in each chr are ordered by start. If strict=TRUE, then chromosomes must be in
order specified by chrOrder. isGenomeOrder for GRanges differs from order in that it orders by
chromsome and start position only, rather than chromsome, strand, start, and width.

Arguments

ds GenoSet, GRanges, or RangedData

strict logical, should space/chromosome order be identical to that from chrOrder?

Value

logical

Author(s)

Peter M. Haverty

See Also

Other "genome ordering": chrOrder, toGenomeOrder, toGenomeOrder, toGenomeOrder, toGenomeOrder

Examples

data(genoset)
isGenomeOrder(locData(genoset.ds))

locData 31

locData Access the feature genome position info

Description

The position information for each probe/feature is stored as an IRanges RangedData object. The
locData functions allow this data to be accessed or re-set.

Arguments

object GenoSet

value RangedData describing features

Value

A GenoSet object

Methods

signature(object = "GenoSet"”) Get location data.

signature(object = "GenoSet”, value = "RangedData") Set location data.

Author(s)

Peter M. Haverty

Examples

data(genoset)
rd = locData(genoset.ds)
locData(genoset.ds) = rd

lr2cn Take vector or matrix of log2 ratios, convert to copynumber Utility
function for converting log2ratio units (zero is normal) to copynumber
units (two is normal)

Description

Take vector or matrix of log?2 ratios, convert to copynumber Utility function for converting log2ratio
units (zero is normal) to copynumber units (two is normal)

Usage
1r2en(x)

32

Arguments

X numeric data in log2ratio values

Value

data of same type as "x" transformed into copynumber units

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

cn2lr

lrr Get lrr data

Description

Get or Set the lrr assayData slot

Arguments

object A BAFset object

Details

Get or Set the lrr assayData slot

Value

matrix

Author(s)

Peter M. Haverty

modeCenter 33

modeCenter Center continuous data on mode

Description

Copynumber data distributions are generally multi-modal. It is often assumed that the tallest peak
represents "normal” and should therefore be centered on a log2ratio of zero. This function uses the
density function to find the mode of the dominant peak and subtracts that value from the input data.

Usage
modeCenter (ds)
Arguments
ds numeric matrix
Value

numeric matrix

Author(s)
Peter M. Haverty

Examples

modeCenter(matrix(rnorm(150, mean=0), ncol=3))

pos Positions for features

Description

Chromosome position of features

Arguments

object GRanges, RangedData or GenoSet

Details

Get chromosome position of features/ranges. Defined as floor of mean of start and end.

Value

numeric vector of feature positions within a chromosome

34 rangeColMeans

Author(s)

Peter Haverty

Examples

data(genoset)
pos(genoset.ds) # 1:10
pos(locData(genoset.ds)) # The same

rangeColMeans Calculate column means for multiple ranges

Description

Essentially colMeans with a loop, all in a .Call. Designed to take a 2-column matrix of row indices,
bounds, for a matrix, x, and calculate mean for each range in each column (or along a single vector).
bounds matrix need not cover all rows.

Usage

rangeColMeans(bounds, x)

Arguments

bounds A two column integer matrix of row indices

X A numeric matrix with rows corresponding to indices in bounds.
Value

A numeric matrix or vector, matching the form of x. One row for each row in bounds, one col
for each col of x and appropriate dimnames. If x is a vector, just a vector with names from the
rownames of bounds.

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Other "range summaries": boundingIndices, boundingIndices2, boundingIndicesByChr, rangeSampleMeans

rangeSampleMeans 35

rangeSampleMeans Average features in ranges per sample

Description

This function takes per-feature genomic data and returns averages for each of a set of genomic
ranges. The most obvious application is determining the copy number of a set of genes. The
features corresponding to each gene are determined with boundingIndices such that all features
with the bounds of a gene (overlaps). The features on either side of the gene unless those positions
exactly match the first or last base covered by the gene. Therefore, genes falling between two
features will at least cover two features. This is similar to rangeSampleMeans, but it checks the
subject positions for being sorted and not being NA and also treats them as doubles, not ints. Range
bounding performed by the boundinglIndices function.

Usage

rangeSampleMeans(query.rd, subject, assay.element)

Arguments
query.rd RangedData object representing genomic regions (genes) to be averaged.
subject A GenoSet object or derivative

assay.element character, name of element in assayData to use to extract data

Value

numeric matrix of features in each range averaged by sample

Author(s)

Peter M. Haverty

See Also

Other "range summaries": boundingIndices, boundingIndices2, boundingIndicesByChr, rangeColMeans

Examples

data(genoset)
my.genes = RangedData(ranges=IRanges(start=c(35e6,128e6),end=c(37e6,129e6),names=c("HER2","CMYC")), space=c("
rangeSampleMeans(my.genes, genoset.ds, "lrr")

36 readGenoSet

rangeSegMeanLength Get segment widths

Description

The width of a genomic segment helps inform us about the importance of a copy number value.
Focal amplifications are more interesting than broad gains, for example. Given a range of interesting
regions (i.e. genes) this function determines all genomics segments covered by each gene and
returns the average length of the segments covered by each gene in each sample. Often only a
single segment covers a given gene in a given sample.

Arguments

range.gr GRanges, genome regions of interest, usually genes

segs data.frame of segments, like from segTable, or a list of these
Value

named vector of lengths, one per item in range.gr, or a range x length(segs) of these if segs is also
list-like.
See Also

Other "segmented data": bounds2Rle, runCBS, segPairTable, segPairTable, segPairTable,
segs2Granges, segs2RangedData, segs2R1e, segs2RleDataFrame, segTable, segTable, segTable

readGenoSet Load a GenoSet from a RData file

Description

Given a rds file or a rda file with one object (a GenoSet or related object), load it, and return.

Usage
readGenoSet (path)
Arguments
path character, path to rds or rda file
Value

GenoSet or related object (only object in RData file)

runCBS 37

Author(s)

Peter M. Haverty <phaverty@gene.com>

Examples

Not run: ds = readGenoSet("/path/to/genoset.RData")
Not run: ds = readGenoSet("/path/to/genoset.rda")
Not run: ds = readGenoSet("/path/to/genoset.rds")

runCBS Run CBS Segmentation

Description

Utility function to run CBS’s three functions on one or more samples

Usage

runCBS(data, locs, return.segs = FALSE, n.cores = 1,
smooth.region = 2, outlier.SD.scale = 4,
smooth.SD.scale = 2, trim = 0.025, alpha = 0.001)

Arguments
data numeric matrix with continuous data in one or more columns
locs GenomicRanges, like locData slot of GenoSet
return.segs logical, if true list of segment data.frames return, otherwise a DataFrame of Rle
vectors. One Rle per sample.
n.cores numeric, number of cores to ask mclapply to use

smooth.region number of positions to left and right of individual positions to consider when
smoothing single point outliers

outlier.SD.scale
number of SD single points must exceed smooth.region to be considered an
outlier

smooth.SD.scale
floor used to reset single point outliers

trim fraction of sample to smooth
alpha pvalue cutoff for calling a breakpoint
Details

Takes care of running CBS segmentation on one or more samples. Makes appropriate input,
smooths outliers, and segment

38 segPairTable

Value

data frame of segments from CBS

Author(s)
Peter M. Haverty

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
segPairTable, segPairTable, segPairTable, segs2Granges, segs2RangedData, segs2Rle, segs2R1eDataFrame,
segTable, segTable, segTable

Examples

sample.names = paste("a",1:2,sep="")
probe.names = paste("p”,1:30,sep="")
ds = matrix(c(c(rep(5,20),rep(3,10)),c(rep(2,10),rep(7,10),rep(9,10))),ncol=2,dimnames=1ist(probe.names, samp
locs = GRanges(ranges=IRanges(start=c(1:20,1:10),width=1,names=probe.names), seqnames=paste("”chr"”,c(rep(1,20)

seg.rle.result = DataFrame(al = Rle(c(rep(5,20),rep(3,10))), a2 = Rle(c(rep(2,10),rep(7,10),rep(9,10))), row.r
seg.list.result = list(
al = data.frame(ID=rep("al1",2), chrom=factor(c("chr1”,"chr2")), loc.start=c(1,1), loc.end=c(20,10), num.marl
a2 = data.frame(ID=rep(”a2",3), chrom=factor(c("chr1”,"chr1”,"chr2")), loc.start=c(1,11,1), loc.end=c(10,20
)

runCBS(ds,locs) # Should give seg.rle.result
runCBS(ds, locs,return.segs=TRUE) # Should give seg.list.result

segPairTable Convert Rle objects to tables of segments

Description

Like segTable, but for two Rle objects. Takes a pair of Rle or DataFrames with Rle columns and
makes one or more data.frames with bounds of each new segment. Rle objects are broken up so
that each resulting segment has one value from each Rle. For a DataFrame, the argument stack
combines all of the individual data.frames into one large data.frame and adds a "Sample" column
of sample ids.

Arguments
X Rle or list/DataFrame of Rle vectors
y Rle or list/DataFrame of Rle vectors
locs GenomicRanges with rows corresponding to rows of df
chr.ind matrix, like from chrlndices method

start integer, vector of feature start positions

segs2Granges 39

end integer, vector of feature end positions

factor.chr scalar logical, make ’chrom’ column a factor?

stack logical, rbind list of segment tables for each sample and add "Sample" column?
Details

For a Rle, the user can provide locs or chr.ind, start and stop. The latter is surprisingly much
faster and this is used in the DataFrame version.

Value

one or a list of data.frames with columns chrom, loc.start, loc.end, num.mark, seg.mean

Author(s)

Peter M. Haverty

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segs2Granges, segs2RangedData, segs2R1e, segs2R1eDataFrame, segTable, segTable,
segTable

Examples

cn = Rle(c(3,4,5,6),rep(3,4))
loh = Rle(c(2,4,6,8,10,12),rep(2,6))
start = ¢(9:11,4:9,15:17)
end = start
locs = GRanges(IRanges(start=start,end=end), seqnames=c(rep(”chr1”,3),rep("chr2”,6),rep("chr3”,3)))
segPairTable(cn,loh,locs)

segs2Granges GRanges from segment table

Description

GenoSet contains a number of functions that work on segments. Many work on a data.frame of
segments, like segTable and runCBS. This function converts one of these tables in a GRanges. The
three columns specifying the ranges become the GRanges and all other columns go into the *mcols’
portion of the GRanges object.

Usage

segs2Granges(segs)

40 segs2RangedData

Arguments
segs data.frame with loc.start, loc.end, and chrom columns, like from segTable or
runCBS
Value
GRanges
See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2RangedData, segs2R1e, segs2R1eDataFrame,
segTable, segTable, segTable

segs2RangedData Make a RangedData from segments

Description
Starting from a data.frame of segments, like from CBS and segTable, organize as a RangedData.
Label data "score", so it can easily be made into various genome browser formats using rtracklayer.
Usage

segs2RangedData(segs)

Arguments

segs data.frame, like from segment in DNAcopy or segTable

Value

RangedData

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2Granges, segs2R1le, segs2R1leDataFrame,
segTable, segTable, segTable

Other segments: segs2R1leDataFrame

segs2Rle 41

segs2Rle Make Rle from segments for one sample

Description

Take output of CBS, make Rle representing all features in ’locs’ ranges. CBS output contains run
length and run values for genomic segmetns, which could very directly be converted into a Rle.
However, as NA values are often removed, especially for mBAF data, these run lengths do not
necessarily cover all features in every sample. Using the start and top positions of each segment
and the location of each feature, we can make a Rle that represents all features.

Usage

segs2Rle(segs, locs)

Arguments
segs data.frame of segments, formatted as output of segment function from DNAcopy
package
locs GenomicRanges, like locData slot of a GenoSet
Value

Rle with run lengths and run values covering all features in the data set.

Author(s)

Peter M. Haverty <phaverty@gene.com>

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2Granges, segs2RangedData, segs2R1eDataFrame,
segTable, segTable, segTable

Examples
data(genoset)
segs = runCBS(genoset.ds[, , "lrr"], locData(genoset.ds), return.segs=TRUE)

segs2Rle(segs[[1]], locData(genoset.ds)) # Take a data.frame of segments, say from DNAcopys segment function, a

42 segs2RleDataFrame

segs2RleDataFrame CBS segments to probe matrix

Description

Given segments, make a DataFrame of Rle objects for each sample

Usage

segs2RleDataFrame(seg.list, locs)

Arguments
seg.list list, list of data frames, one per sample, each is result from CBS
locs locData from a GenoSet object

Details

Take table of segments from CBS, convert DataTable of Rle objects for each sample.

Value

DataFrame of Rle objects with nrows same as locs and one column for each sample

Author(s)

Peter Haverty

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2Granges, segs2RangedData, segs2Rle,
segTable, segTable, segTable

Other segments: segs2RangedData

Examples

data(genoset)
seg.list = runCBS(genoset.ds[, , "lrr"], locData(genoset.ds), return.segs=TRUE)
segs2RleDataFrame(seg.list, locData(genoset.ds)) # Loop segs2Rle on list of data.frames in seg.list

segTable 43

segTable Convert Rle objects to tables of segments

Description

Like the inverse of segs2Rle and segs2RleDataFrame. Takes a Rle or a DataFrame with Rle columns
and the locData both from a GenoSet object and makes a list of data.frames each like the result of
CBS’s segment. Note the loc.start and loc.stop will correspond exactly to probe locations in locData
and the input to segs2RleDataFrame are not necessarily so. For a DataFrame, the argument stack
combines all of the individual data.frames into one large data.frame and adds a "Sample" column
of sample ids.

Arguments

object Rle or list/DataFrame of Rle vectors

locs GenomicRanges with rows corresponding to rows of df

chr.ind matrix, like from chrlndices method

start integer, vector of feature start positions

end integer, vector of feature end positions

factor.chr scalar logical, make ’chrom’ column a factor?

stack logical, rbind list of segment tables for each sample and add "Sample" column?
Details

For a Rle, the user can provide locs or chr.ind, start and stop. The latter is surprisingly much
faster and this is used in the DataFrame version.

Value

one or a list of data.frames with columns chrom, loc.start, loc.end, num.mark, seg.mean

Author(s)

Peter M. Haverty

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, rangeSegMeanLength, rangeSegMeanLength,
runCBS, segPairTable, segPairTable, segPairTable, segs2Granges, segs2RangedData, segs2Rle,
segs2RleDataFrame

44 start

Examples

data(genoset)

seg.list = runCBS(genoset.ds[, , "lrr"], locData(genoset.ds), return.segs=TRUE)

df = segs2RleDataFrame(seg.list, locData(genoset.ds)) # Loop segs2Rle on list of data.frames in seg.list
assayDataElement(genoset.ds, "lrr.segs”) = df

segTable(df, locData(genoset.ds))

segTable(genoset.ds[, , "lrr.segs"], locData(genoset.ds))

segTable(genoset.ds[, 1, "lrr.segs”], locData(genoset.ds), colnames(genoset.ds)[1])

show Show a GenoSet

Description

Prints a description of a GenoSet object.

start Get start of location for each feature

Description

Get start of location for each feature
Get end of location for each feature
Get width of location for each feature

Get names of data matrices. For the time being, this is assayDataElementNames. This function
used to do chrNames.

Get elementLengths from locData slot

Arguments
X GenoSet
X GenoSet
X GenoSet
X GenoSet
X GenoSet
X GenoSet
i character, RangedData, logical, integer
3j character, RangedData, logical, integer
k character or integer
drop logical drop levels of space factor?

additional subsetting args

subsetAssayData 45

Details

Get elementLengths from locData slot

Value
integer
integer
integer
character

character

Author(s)

Peter M. Haverty
Peter M. Haverty
Peter M. Haverty
Peter Haverty
Peter Haverty

Examples

data(genoset)
genoset.ds[1:5,2:3] # first five probes and samples 2 and 3
genoset.ds[, "K"] # Sample called K
rd = RangedData(ranges=IRanges(start=seq(from=15e6,by=1e6,length=7),width=1),names=1letters[8:14], space=rep("cl
genoset.ds[rd, "K"] # sample K and probes overlapping those in rd, which overlap specifed ranges on chri17

subsetAssayData Subset assayData

Description

Subset or re-order assayData

Usage
subsetAssayData(orig, i, j, ..., drop = FALSE)
Arguments
orig assayData environment
i row indices
Jj col indices

Additional args to give to subset operator

drop logical, drop dimensions when subsetting with single value?

46 toGenomeOrder

Details
Subset or re-order assayData locked environment, environment, or list. Shamelessly stolen from "["
method in Biobase version 2.8 along with guts of assayDataStorageMode()

Value

assayData data structure

Author(s)

Peter M. Haverty

Examples

data(genoset)
ad = assayData(genoset.ds)
small.ad = subsetAssayData(ad,1:5,2:3)

toGenomeOrder Set a GRanges, GenoSet, or RangedData to genome order

Description

Returns a re-ordered object sorted by chromosome and start position. If strict=TRUE, then chro-
mosomes must be in order specified by chrOrder. If ds is already ordered, no re-ordering is
done. Therefore, checking order with isGenomeOrder, is unnecessary if order will be corrected
if isGenomeOrder is FALSE.

Arguments

ds GenoSet, GRanges, or RangedData

strict logical, should chromosomes be in order specified by chrOrder?
Details

toGenomeOrder for GRanges differs from sort in that it orders by chromsome and start position
only, rather than chromsome, strand, start, and width.

Value

re-ordered ds

Author(s)

Peter M. Haverty

toGenomeOrder

See Also

Other "genome ordering": chrOrder, isGenomeOrder, isGenomeOrder, isGenomeOrder

Examples

data(genoset)
toGenomeOrder(genoset.ds, strict=TRUE)
toGenomeOrder(genoset.ds, strict=FALSE)
toGenomeOrder(locData(genoset.ds))

47

Index

*Topic classes

BAFSet-class, 6

CNSet-class, 18

GenoSet-class, 26
xTopic datasets

genoset-datasets, 28
[(start), 44
[,GenoSet,ANY,ANY,ANY-method (start), 44
[,GenoSet,ANY-method (start), 44

chr,RangedData-method (chr), 12

chrindices, 13

chrindices,RangedDataOrGenoSetOrGenomicRanges-method
(chrIndices), 13

chrinfo, 14

chrInfo,RangedDataOrGenoSetOrGenomicRanges-method
(chrinfo), 14

chrNames, 14

chrNames, GenoSet-method (chrNames), 14

[,GenoSet,RangedDatalOrGenomicRanges, ANY, ANY-metthidames , GRanges-method (chrNames), 14

(start), 44
[,GenoSet,RangedDataOrGenomicRanges-method
(start), 44
[,GenoSet, character,ANY,ANY-method
(start), 44
[,GenoSet,character-method (start), 44
[<- (start), 44
[<-,GenoSet,ANY,ANY,ANY-method (start),
44

baf, 3

baf,BAFSet-method (baf), 3

baf2mbaf, 4

baf<- (baf), 3

baf<-,BAFSet,matrix-method (baf), 3

BAFSet, 5,7, 18,27

BAFSet-class, 6

BAFSet-defunct (BAFSet), 5

BAFSet.to.ExpressionSets, 7

BAFSet.to.ExpressionSets-defunct
(BAFSet.to.ExpressionSets), 7

boundingIndices, 8, 10, 11, 34, 35

boundingIndices2,9, 9, 11, 34, 35

boundingIndicesByChr, 9, 10, 10, 34, 35

bounds2Rle, 11, 36, 3843

calcGC, 12

chr, 12
chr,GenoSet-method (chr), 12
chr,GRanges-method (chr), 12

48

chrNames,RangedData-method (chrNames),
14

chrNames<- (chrNames), 14

chrNames<-,GenoSet-method (chrNames), 14

chrNames<-,GRanges-method (chrNames), 14

chrNames<-,RangedData-method
(chrNames), 14

chrOrder, 15, 30, 47

cn, 16

cn,CNSet-method (cn), 16

cn2lr, 16

cn<-(cn), 16

cn<-,CNSet,matrix-method (cn), 16

CNSet, 7,17, 18, 27

CNSet-class, 18

CNSet-defunct (CNSet), 17

colMeans, 19

colMeans,DataFrame-method (colMeans), 19

colnames, 19

colnames,GenoSet-method (colnames), 19

dim(start), 44
dim,GenoSet-method (start), 44

elementLengths (start), 44

elementLengths,GenoSet-method (start),
44

elementLengths,GRanges-method (start),
44

end (start), 44

INDEX

end,GenoSet-method (start), 44
eSet, 6, 18, 26

fake.baf (genoset-datasets), 28
fake.cn (genoset-datasets), 28
fake.lrr (genoset-datasets), 28
fake.pData (genoset-datasets), 28
featureNames, 20
featureNames,GenoSet-method
(featureNames), 20
featureNames,GRanges-method
(featureNames), 20
featureNames,RangedData-method
(featureNames), 20
featureNames<- (featureNames), 20
featureNames<-,GenoSet-method
(featureNames), 20
featureNames<-,GRanges-method
(featureNames), 20

featureNames<-,RangedData-method

(featureNames), 20
fixSegNAs, 20

gcCorrect, 21
genome, 21
genome, GenoSet-method (genome), 21

genome<-,GenoSet-method (genome), 21

genomeAxis, 22, 24

genoPlot, 23, 23

genoPlot,numeric,numeric-method
(genoPlot), 23

genoPlot,numeric,Rle-method (genoPlot),

23

49

isGenomeOrder, 15, 30, 47

isGenomeOrder,GRanges-method
(isGenomeOrder), 30

isGenomeOrder,RangedDataOrGenoSet-method
(isGenomeOrder), 30

locData, 31

locData,GenoSet-method (locData), 31

locData-methods (locData), 31

locData.gr (genoset-datasets), 28

locData<- (locData), 31

locData<-,GenoSet,RangedDataOrGenomicRanges-method
(locData), 31

locData<--methods (locData), 31

1lr2cn, 31

1rr, 32

lrr,BAFSet-method (1rr), 32

lrr<-(1rr), 32

lrr<-,BAFSet,matrix-method (1rr), 32

modeCenter, 33

names (start), 44
names,GenoSet-method (start), 44
nrow (start), 44
nrow,GRanges-method (start), 44

pos, 33
pos,RangedDataOrGenoSetOrGenomicRanges-method
(pos), 33

rangeColMeans, 9-11, 34, 35
rangeSampleMeans, 9-11, 34, 35
rangeSegMeanLength, /1, 36, 38—43

genoPlot,RangedDataOrGenoSetOrGenomicRanges, ANYngesbg@deanlength, GRanges, data. frame-method

(genoPlot), 23
genoPlot-methods (genoPlot), 23
genoPos, 24

(rangeSegMeanLength), 36
rangeSegMeanLength,GRanges, list-method
(rangeSegMeanlLength), 36

genoPos,RangedDataOrGenoSetOrGenomicRanges-metdgdGenoSet, 36

(genoPos), 24
GenoSet, 6, 7, 18, 25,27
genoset (genoset-package), 3
GenoSet-class, 26
genoset-datasets, 28
genoset-defunct, 28
genoset-deprecated, 29
genoset-package, 3
genoset.ds (genoset-datasets), 28

initGenoSet, 29

rownames (featureNames), 20

rownames, GenoSet-method (featureNames),
20

rownames, GRanges-method (featureNames),
20

rownames<- (featureNames), 20

rownames<-,GRanges-method
(featureNames), 20

runCBS, 11, 36, 37, 3943

sampleNames (colnames), 19

50

sampleNames, GenoSet-method (colnames),
19
sampleNames<- (colnames), 19
segPairTable, 11, 36, 38, 38, 40-43
segPairTable,DataFrame,DataFrame-method
(segPairTable), 38
segPairTable,Rle,Rle-method
(segPairTable), 38
segs2Granges, 11, 36, 38, 39, 39-43
segs2RangedData, 11, 36, 38, 39, 40, 40-43
segs2Rle, 11, 36, 38—40, 41, 42, 43
segs2RleDataFrame, 11, 36, 38—41,42,43
segTable, 11, 36, 38—42, 43
segTable,DataFrame-method (segTable), 43
segTable,Rle-method (segTable), 43
show, 44
show,BAFSet-method (show), 44
show,CNSet-method (show), 44
show, GenoSet-method (show), 44
start, 44
start,GenoSet-method (start), 44
subsetAssayData, 45

toGenomeOrder, 15, 30, 46
toGenomeOrder,GenoSet-method
(toGenomeOrder), 46
toGenomeOrder,GRanges-method
(toGenomeOrder), 46
toGenomeOrder,RangedData-method
(toGenomeOrder), 46

universe,GenoSet-method (genome), 21
universe,GRanges-method (genome), 21
universe<-,GenoSet-method (genome), 21
universe<-,GRanges-method (genome), 21

width (start), 44

INDEX

	genoset-package
	baf
	baf2mbaf
	BAFSet
	BAFSet-class
	BAFSet.to.ExpressionSets
	boundingIndices
	boundingIndices2
	boundingIndicesByChr
	bounds2Rle
	calcGC
	chr
	chrIndices
	chrInfo
	chrNames
	chrOrder
	cn
	cn2lr
	CNSet
	CNSet-class
	colMeans
	colnames
	featureNames
	fixSegNAs
	gcCorrect
	genome
	genomeAxis
	genoPlot
	genoPos
	GenoSet
	GenoSet-class
	genoset-datasets
	genoset-defunct
	genoset-deprecated
	initGenoSet
	isGenomeOrder
	locData
	lr2cn
	lrr
	modeCenter
	pos
	rangeColMeans
	rangeSampleMeans
	rangeSegMeanLength
	readGenoSet
	runCBS
	segPairTable
	segs2Granges
	segs2RangedData
	segs2Rle
	segs2RleDataFrame
	segTable
	show
	start
	subsetAssayData
	toGenomeOrder
	Index

