
Package ‘DESeq2’
April 5, 2014

Type Package

Title Differential gene expression analysis based on the negative binomial distribution

Version 1.2.10

Author Michael Love (MPIMG Berlin), Simon Anders, Wolfgang Huber (EMBL Heidelberg)

Maintainer Michael Love <michaelisaiahlove@gmail.com>

Description Estimate variance-mean dependence in count data from
high-throughput sequencing assays and test for differential expression
based on a model using the negative binomial distribution

License GPL (>= 3)

biocViews HighThroughputSequencing, ChIPseq, RNAseq, SAGE,DifferentialExpression

Imports BiocGenerics (>= 0.7.5), methods, locfit, genefilter,RColorBrewer, lattice

Depends GenomicRanges, IRanges, Rcpp (>= 0.10.1), RcppArmadillo (>= 0.3.4.4)

Suggests RUnit, Biobase, parathyroidSE, pasilla (>= 0.2.10), vsn,gplots, BiocStyle

LinkingTo Rcpp, RcppArmadillo

Collate 'AllClasses.R' 'AllGenerics.R' 'core.R' 'methods.R' 'plots.R'
'rlogTransformation.R' 'varianceStabilizingTransformation.R'

R topics documented:
counts . 2
DESeq . 3
DESeqDataSet . 4
design . 6
dispersionFunction . 6
dispersions . 7
estimateDispersions . 8
estimateDispersionsGeneEst . 9

1

2 counts

estimateSizeFactors . 11
estimateSizeFactorsForMatrix . 12
makeExampleDESeqDataSet . 13
nbinomLRT . 14
nbinomWaldTest . 15
normalizationFactors . 16
plotDispEsts . 17
plotMA . 18
plotPCA . 20
replaceOutliersWithTrimmedMean . 20
results . 21
rlogTransformation . 24
sizeFactors . 25
varianceStabilizingTransformation . 26

Index 29

counts Accessors for the ’counts’ slot of a DESeqDataSet object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

S4 method for signature DESeqDataSet
counts(object,normalized=FALSE)

S4 replacement method for signature DESeqDataSet,matrix
counts(object)<-value

Arguments

object a DESeqDataSet object.

normalized logical indicating whether or not to divide the counts by the size factors or nor-
malization factors before returning (normalization factors always preempt size
factors)

value an integer matrix

Author(s)

Simon Anders

See Also

sizeFactors, normalizationFactors

DESeq 3

Examples

dds <- makeExampleDESeqDataSet()
head(counts(dds))

DESeq Differential expression analysis based on the negative binomial distri-
bution

Description

This function performs a default analysis by calling, in order, the functions: estimateSizeFactors,
estimateDispersions, nbinomWaldTest.

Usage

DESeq(object, test = c("Wald", "LRT"),
fitType = c("parametric", "local", "mean"),
betaPrior = TRUE, full = design(object), reduced,
quiet = FALSE)

Arguments

object a DESeqDataSet object, see the constructor functions DESeqDataSet, DESeqDataSetFromMatrix,
DESeqDataSetFromHTSeqCount.

test either "Wald" or "LRT", which will then use either Wald tests if coefficients are
equal to zero (nbinomWaldTest), or the likelihood ratio test on the difference in
deviance between a full and reduced model formula (nbinomLRT)

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity. See estimateDispersions for description.

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients
(Tikhonov/ridge regularization) See nbinomWaldTest for description. Only used
for the Wald test.

full the full model formula, this should be the formula in design(object)

reduced a reduced formula to compare against, e.g. the full model with a term or terms
of interest removed

quiet whether to print messages at each step

Details

The differential expression analysis uses a generalized linear model of the form:

Kij ∼ NB(µij , αi)

µij = sjqij

log2(qij) = xj.βi

4 DESeqDataSet

where counts Kij for gene i, sample j are modeled using a negative binomial distribution with fitted
mean µij and a gene-specific dispersion parameter αi. The fitted mean is composed of a sample-
specific size factor sj and a parameter qij proportional to the expected true concentration of frag-
ments for sample j. The coefficients βi give the log2 fold changes for gene i for each column of the
model matrix X . The sample-specific size factors can be replaced by gene-specific normalization
factors for each sample using normalizationFactors. For details on the fitting of the log2 fold
changes and calculation of p-values see nbinomWaldTest (or nbinomLRT if using test="LRT").

Value

a DESeqDataSet object with results stored as metadata columns. The results can be accessed by
calling the results function. By default this will return the log2 fold changes and p-values for the
last variable in the design formula. See results for how to access results for other variables.

Author(s)

Michael Love

References

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 11 (2010) R106, http://dx.doi.org/10.1186/gb-2010-11-10-r106

See Also

nbinomWaldTest, nbinomLRT

Examples

dds <- makeExampleDESeqDataSet(betaSD=1)
dds <- DESeq(dds)
res <- results(dds)
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
resLRT <- results(ddsLRT)

DESeqDataSet DESeqDataSet object and constructors

Description

The DESeqDataSet is a subclass of SummarizedExperiment, used to store the input values, inter-
mediate calculations and results of an analysis of differential expression. The DESeqDataSet class
enforces non-negative integer values in the "counts" matrix stored as the first element in the assay
list. In addition, a formula which specifies the design of the experiment must be provided. The
constructor functions create a DESeqDataSet object from various types of input: a Summarized-
Experiment, a matrix, or count files generated by the python package HTSeq. See the vignette for
examples of construction from all three input types.

http://dx.doi.org/10.1186/gb-2010-11-10-r106

DESeqDataSet 5

Usage

DESeqDataSet(se, design)

DESeqDataSetFromMatrix(countData, colData, design, ...)

DESeqDataSetFromHTSeqCount(sampleTable, directory = "",
design, ...)

Arguments

se a SummarizedExperiment with at least one column in colData, and the counts as
the first element in the assays list, which will be renamed "counts". A SummarizedExperiment
object can be generated by the function summarizeOverlaps in the Genomi-
cRanges package.

design a formula which specifies the design of the experiment, taking the form formula(~ x + y + z).
By default, the functions in this package will use the last variable in the formula
(e.g. z) for presenting results (fold changes, etc.) and plotting.

countData for matrix input: a matrix of non-negative integers

colData for matrix input: a DataFrame or data.frame with at least a single column.
Rows of colData correspond to columns of countData.

sampleTable for htseq-count: a data.frame with three or more columns. Each row describes
one sample. The first column is the sample name, the second column the file
name of the count file generated by htseq-count, and the remaining columns are
sample metadata which will be stored in colData

directory for htseq-count: the directory relative to which the filenames are specified

... arguments provided to SummarizedExperiment including rowData and expt-
Data

Value

A DESeqDataSet object.

References

See http://www-huber.embl.de/users/anders/HTSeq for htseq-count

Examples

countData <- matrix(1:4,ncol=2)
colData <- data.frame(condition=factor(c("a","b")))
dds <- DESeqDataSetFromMatrix(countData, colData, formula(~ condition))

http://www-huber.embl.de/users/anders/HTSeq

6 dispersionFunction

design Accessors for the ’design’ slot of a DESeqDataSet object.

Description

Accessors for the ’design’ slot of a DESeqDataSet object.

Usage

S4 method for signature DESeqDataSet
design(object)

S4 replacement method for signature DESeqDataSet,formula
design(object)<-value

Arguments

object a DESeqDataSet object

value a formula used for estimating dispersion and fitting negative binomial GLMs

Examples

dds <- makeExampleDESeqDataSet()
design(dds) <- formula(~ 1)

dispersionFunction Accessors for the ’dispersionFunction’ slot of a DESeqDataSet object.

Description

The dispersion function is calculated by estimateDispersions and used by varianceStabilizingTransformation.
Parametric dispersion fits store the coefficients of the fit as attributes in this slot.

Usage

S4 method for signature DESeqDataSet
dispersionFunction(object)

S4 replacement method for signature DESeqDataSet,function
dispersionFunction(object)<-value

Arguments

object a DESeqDataSet object.

value a function

dispersions 7

Examples

example("estimateDispersions")
dispersionFunction(dds)

dispersions Accessor functions for the dispersion estimates in a DESeqDataSet
object.

Description

The dispersions for each row of the DESeqDataSet. Generally, these should be set only by estimateDispersions.

Usage

S4 method for signature DESeqDataSet
dispersions(object)

S4 replacement method for signature DESeqDataSet,numeric
dispersions(object)<-value

Arguments

object a DESeqDataSet object.

value the dispersions to use for the negative binomial modeling

Author(s)

Simon Anders

See Also

estimateDispersions

Examples

example("estimateDispersions")
dispersions(dds)

8 estimateDispersions

estimateDispersions Estimate the dispersions for a DESeqDataSet

Description

This function obtains dispersion estimates for negative binomial distributed data.

Usage

S4 method for signature DESeqDataSet
estimateDispersions(object,fitType=c("parametric","local","mean"),maxit=100,

quiet=FALSE)

Arguments

object a DESeqDataSet

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity.

• parametric - fit a dispersion-mean relation of the form:

dispersion = asymptDisp+ extraPois/mean

via a robust gamma-family GLM. The coefficients asymptDisp and extraPois
are given in the attribute coefficients of the dispersionFunction of the
object.

• local - use the locfit package to fit a local regression of log dispersions over
log base mean (normal scale means and dispersions are input and output
for dispersionFunction). The points are weighted by normalized mean
count in the local regression.

• mean - use the mean of gene-wise dispersion estimates.

maxit control parameter: maximum number of iterations to allow for convergence

quiet whether to print messages at each step

Details

Typically the function is called with the idiom:

dds <- estimateDispersions(dds)

The fitting proceeds as follows: for each gene, an estimate of the dispersion is found which maxi-
mizes the Cox Reid-adjusted profile likelihood (the methods of Cox Reid-adjusted profile likelihood
maximization for estimation of dispersion in RNA-Seq data were developed by McCarthy, et al.
(2012), first implemented in the edgeR package in 2010); a dispersion-mean relationship is fit to the
maximum likelihood estimates; a normal prior is determined for the log dispersion estimates cen-
tered on the predicted value from the fit with variance equal to the difference between the observed
variance of the log dispersion estimates and the expected sampling variance; finally maximum a
posteriori dispersion estimates are returned. This final dispersion parameter is used in subsequent

estimateDispersionsGeneEst 9

tests. The final dispersion estimates can be accessed from an object using dispersions. The fitted
dispersion-mean relationship is also used in varianceStabilizingTransformation.

The log normal prior on the dispersion parameter has been proposed by Wu, et al. (2012) and is
also implemented in the DSS package.

estimateDispersions checks for the case of an analysis with as many samples as the number
of coefficients to fit, and will temporarily substitute a design formula ~ 1 for the purposes of
dispersion estimation. This treats the samples as replicates for the purpose of dispersion estimation.
As mentioned in the DESeq paper: "While one may not want to draw strong conclusions from such
an analysis, it may still be useful for exploration and hypothesis generation."

The lower-level functions called by estimateDispersions are: estimateDispersionsGeneEst,
estimateDispersionsFit, and estimateDispersionsMAP.

Value

The DESeqDataSet passed as parameters, with the dispersion information filled in as metadata
columns, accessible via mcols, or the final dispersions accessible via dispersions.

References

• Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data.
Genome Biology 11 (2010) R106, http://dx.doi.org/10.1186/gb-2010-11-10-r106

• McCarthy, DJ, Chen, Y, Smyth, GK: Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Research 40 (2012), 4288-
4297, http://dx.doi.org/10.1093/nar/gks042

• Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics (2012). http://dx.doi.org/10.1093/
biostatistics/kxs033

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
head(dispersions(dds))

estimateDispersionsGeneEst

Low-level functions to fit dispersion estimates

Description

Normal users should instead use estimateDispersions. These low-level functions are called by
estimateDispersions, but are exported and documented for non-standard usage. For instance, it
is possible to replace fitted values with a custom fit and continue with the maximum a posteriori
dispersion estimation, as demonstrated in the examples below.

http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033

10 estimateDispersionsGeneEst

Usage

estimateDispersionsGeneEst(object, minDisp = 1e-08,
kappa_0 = 1, dispTol = 1e-06, maxit = 100,
quiet = FALSE)

estimateDispersionsFit(object,
fitType = c("parametric", "local", "mean"),
minDisp = 1e-08, quiet = FALSE)

estimateDispersionsMAP(object, outlierSD = 2,
dispPriorVar, minDisp = 1e-08, kappa_0 = 1,
dispTol = 1e-06, maxit = 100, quiet = FALSE)

Arguments

object a DESeqDataSet

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity. See estimateDispersions for description.

outlierSD the number of standard deviations of log gene-wise estimates above the prior
mean (fitted value), above which dispersion estimates will be labelled outliers.
Outliers will keep their original value and not be shrunk using the prior.

dispPriorVar the variance of the normal prior on the log dispersions. If not supplied, this is
calculated as the difference between the mean squared residuals of gene-wise
estimates to the fitted dispersion and the expected sampling variance of the log
dispersion

minDisp small value for the minimum dispersion, to allow for calculations in log scale,
one decade above this value is used as a test for inclusion in mean-dispersion
fitting

kappa_0 control parameter used in setting the initial proposal in backtracking search,
higher kappa_0 results in larger steps

dispTol control parameter to test for convergence of log dispersion, stop when increase
in log posterior is less than dispTol

maxit control parameter: maximum number of iterations to allow for convergence

quiet whether to print messages at each step

Value

a DESeqDataSet with gene-wise, fitted, or final MAP dispersion estimates in the metadata columns
of the object.

See Also

estimateDispersions

estimateSizeFactors 11

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersionsGeneEst(dds)
dds <- estimateDispersionsFit(dds)
dds <- estimateDispersionsMAP(dds)
plotDispEsts(dds)

estimateSizeFactors Estimate the size factors for a DESeqDataSet

Description

Estimate the size factors for a DESeqDataSet

Usage

S4 method for signature DESeqDataSet
estimateSizeFactors(object,locfunc=median,geoMeans)

Arguments

object a DESeqDataSet

locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from the genefilter
package may give better results.

geoMeans by default this is not provided and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation

Details

This function estimates the size factors and stores the information which can be accessed using
sizeFactors

Typically, the function is called with the idiom:

dds <- estimateSizeFactors(dds)

See DESeq for a description of the use of size factors in the GLM. You need to call this function
after DESeqDataSet unless you have manually specified sizeFactors. Alternatively, gene-specific
normalization factors for each sample can be provided using normalizationFactors which will
always preempt sizeFactors in calculations.

Internally, the function calls estimateSizeFactorsForMatrix, which provides more details on
the calculation.

Value

The DESeqDataSet passed as parameters, with the size factors filled in.

12 estimateSizeFactorsForMatrix

Author(s)

Simon Anders

See Also

estimateSizeFactorsForMatrix

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
sizeFactors(dds)
geoMeans <- exp(rowMeans(log(counts(dds))))
dds <- estimateSizeFactors(dds,geoMeans=geoMeans)
sizeFactors(dds)

estimateSizeFactorsForMatrix

Low-level function to estimate size factors with robust regression.

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows:
Each column is divided by the geometric means of the rows. The median (or, if requested, an-
other location estimator) of these ratios (skipping the genes with a geometric mean of zero) is
used as the size factor for this column. Typically, you will not call this function directly, but use
estimateSizeFactors.

Usage

estimateSizeFactorsForMatrix(counts, locfunc = median,
geoMeans)

Arguments

counts a matrix or data frame of counts, i.e., non-negative integer values

locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from genefilter may
give better results.

geoMeans by default this is not provided, and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation

Value

a vector with the estimates size factors, one element per column

makeExampleDESeqDataSet 13

Author(s)

Simon Anders

See Also

estimateSizeFactors

Examples

dds <- makeExampleDESeqDataSet()
estimateSizeFactorsForMatrix(counts(dds))
geoMeans <- exp(rowMeans(log(counts(dds))))
estimateSizeFactorsForMatrix(counts(dds),geoMeans=geoMeans)

makeExampleDESeqDataSet

Make a simulated DESeqDataSet

Description

Constructs a simulated dataset of negative binomial data from two conditions. By default, there are
no fold changes between the two conditions, but this can be adjusted with the betaSD argument.

Usage

makeExampleDESeqDataSet(n = 1000, m = 12, betaSD = 0,
interceptMean = 4, interceptSD = 2,
dispMeanRel = function(x) 4/x + 0.1,
sizeFactors = rep(1, m))

Arguments

n number of rows

m number of columns

betaSD the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)

interceptMean the mean of the intercept betas (log2 scale)

interceptSD the standard deviation of the intercept betas (log2 scale)

dispMeanRel a function specifying the relationship of the dispersions on 2^trueIntercept

sizeFactors multiplicative factors for each sample

Value

a DESeqDataSet with true dispersion, intercept and beta values in the metadata columns. Note that
the true betas are provided on the log2 scale.

14 nbinomLRT

Examples

dds <- makeExampleDESeqDataSet()
dds

nbinomLRT Likelihood ratio test (chi-squared test) for GLMs

Description

This function tests for significance of change in deviance between a full and reduced model which
are provided as formula. Fitting uses previously calculated sizeFactors (or normalizationFactors)
and dispersion estimates.

Usage

nbinomLRT(object, full = design(object), reduced,
maxit = 100, useOptim = TRUE, quiet = FALSE,
useQR = TRUE)

Arguments

object a DESeqDataSet

full the full model formula, this should be the formula in design(object)

reduced a reduced formula to compare against, e.g. the full model with a term or terms
of interest removed

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

Details

The difference in deviance is compared to a chi-squared distribution with df = (reduced resid-
ual degrees of freedom - full residual degrees of freedom). This function is comparable to the
nbinomGLMTest of the previous version of DESeq and an alternative to the default nbinomWaldTest.

Value

a DESeqDataSet with new results columns accessible with the results function. The coefficients
and standard errors are reported on a log2 scale.

nbinomWaldTest 15

See Also

nbinomWaldTest

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomLRT(dds, reduced = ~ 1)
res <- results(dds)

nbinomWaldTest Wald test for the GLM coefficients

Description

This function tests for significance of coefficients in a negative binomial GLM, using previously
calculated sizeFactors (or normalizationFactors) and dispersion estimates. See DESeq for the
GLM formula.

Usage

nbinomWaldTest(object, betaPrior = TRUE, betaPriorVar,
maxit = 100, useOptim = TRUE, quiet = FALSE,
useT = FALSE, df, useQR = TRUE)

Arguments

object a DESeqDataSet

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients
(Tikhonov/ridge regularization)

betaPriorVar a vector with length equal to the number of model terms including the intercept.
which if missing is estimated from the rows which do not have any zeros

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useT whether to use a t-distribution as a null distribution, for significance testing of
the Wald statistics. If FALSE, a standard normal null distribution is used.

df the degrees of freedom for the t-distribution

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

16 normalizationFactors

Details

The fitting proceeds as follows: standard maximum likelihood estimates for GLM coefficients are
calculated; a zero-mean normal prior distribution is assumed; the variance of the prior distribution
for each non-intercept coefficient is calculated as the mean squared maximum likelihood estimates
over the genes which do not contain zeros for some condition; the final coefficients are then maxi-
mum a posteriori estimates (using Tikhonov/ridge regularization) using this prior. The use of a prior
has little effect on genes with high counts and helps to moderate the large spread in coefficients for
genes with low counts.

For calculating Wald test p-values, the coefficients are scaled by their standard errors and then
compared to a normal distribution. From examination of Wald statistics for real datasets, the effect
of the prior on dispersion estimates results in a Wald statistic distribution which is approximately
normal.

The Wald test can be replaced with the nbinomLRT for an alternative test of significance.

Value

a DESeqDataSet with results columns accessible with the results function. The coefficients and
standard errors are reported on a log2 scale.

See Also

nbinomLRT

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest(dds)
res <- results(dds)

normalizationFactors Accessor functions for the normalization factors in a DESeqDataSet
object.

Description

Gene-specific normalization factors for each sample can be provided as a matrix, which will pre-
empt sizeFactors. In some experiments, counts for each sample have varying dependence on
covariates, e.g. on GC-content for sequencing data run on different days, and in this case it makes
sense to provide gene-specific factors for each sample rather than a single size factor.

plotDispEsts 17

Usage

S4 method for signature DESeqDataSet
normalizationFactors(object)

S4 replacement method for signature DESeqDataSet,matrix
normalizationFactors(object)<-value

Arguments

object a DESeqDataSet object.

value the matrix of normalization factors

Details

Normalization factors alter the model of DESeq in the following way, for counts Kij and normal-
ization factors NFij for gene i and sample j:

Kij ∼ NB(µij , αi)

µij = NFijqij

Note

Normalization factors are on the scale of the counts (similar to sizeFactors) and unlike offsets,
which are typically on the scale of the predictors (in this case, log counts). Normalization factors
should include size factor normalization and should have a mean around 1, as is the case with size
factors.

Examples

dds <- makeExampleDESeqDataSet()
normFactors <- matrix(runif(nrow(dds)*ncol(dds),0.5,1.5),

ncol=ncol(dds),nrow=nrow(dds))
normalizationFactors(dds) <- normFactors
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest(dds)

plotDispEsts Plot dispersion estimates

Description

A simple helper function that plots the per-gene dispersion estimates together with the fitted mean-
dispersion relationship.

18 plotMA

Usage

S4 method for signature DESeqDataSet
plotDispEsts(object, ymin,

genecol = "black", fitcol = "red", finalcol =
"dodgerblue", legend=TRUE, xlab, ylab, log = "xy", cex
= 0.45, ...)

Arguments

object a DESeqDataSet

ymin the lower bound for points on the plot, points beyond this are drawn as triangles
at ymin

genecol the color for gene-wise dispersion estimates

fitcol the color of the fitted estimates

finalcol the color of the final estimates used for testing

legend logical, whether to draw a legend

xlab xlab

ylab ylab

log log

cex cex

... further arguments to plot

Author(s)

Simon Anders

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
plotDispEsts(dds)

plotMA MA-plot from base means and log fold changes

Description

A simple helper function that makes a so-called "MA-plot", i.e. a scatter plot of log2 fold changes
(on the y-axis) versus the mean of normalized counts (on the x-axis).

plotMA 19

Usage

S4 method for signature DESeqDataSet
plotMA(object, lfcColname,

pvalues, pvalCutoff=.1, ylim, linecol = "#ff000080",
pointcol = c("black","red"), xlab, ylab, log = "x",
cex=0.45, ...)

Arguments

object a DESeqDataSet processed by DESeq, or the individual functions nbinomWaldTest
or nbinomLRT

lfcColname the name of the column for log fold changes, if not provided this will default
to the last variable in the design formula. for options for this argument, check
resultsNames(object).

pvalues a vector of the p-values or adjusted p-values to use in coloring the points. If not
provided, defaults to the ’padj’ column of results(object)

pvalCutoff the cutoff for drawing red or black points

ylim the limits for the y axis (chosen automatically if not specified)

linecol the color of the horizontal line

pointcol a vector of length two of the colors for the not significant and significant points,
respectively

xlab the label for the x axis

ylab the label for the y axis

log log, defaults to "x", the y-axis is already in log scale

cex the size of the points

... further arguments to plot

Author(s)

Wolfgang Huber

Examples

dds <- makeExampleDESeqDataSet()
dds <- DESeq(dds)
plotMA(dds)

20 replaceOutliersWithTrimmedMean

plotPCA Sample PCA plot from variance-stabilized data

Description

This plot helps to check for batch effects and the like.

Usage

plotPCA(x, intgroup = "condition", ntop = 500)

Arguments

x a SummarizedExperiment, with data in assay(x), produced for example by
either varianceStabilizingTransformation or rlogTransformation

intgroup a character vector of names in colData(x) to use for grouping

ntop number of top genes to use for principal components, selected by highest row
variance

Note

See the vignette for an example of variance stabilization and PCA plots.

Author(s)

Wolfgang Huber

Examples

dds <- makeExampleDESeqDataSet(betaSD=1)
design(dds) <- formula(~ 1)
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
vsd <- varianceStabilizingTransformation(dds)
plotPCA(vsd)

replaceOutliersWithTrimmedMean

Replace outliers with trimmed mean

results 21

Description

The DESeq function calculates a diagnostic measure called Cook’s distance for every gene and every
sample. The results function then sets the p-values to NA for genes which contain an outlying
count as defined by a Cook’s distance above a threshold. With many degrees of freedom, i.e. many
more samples than number of parameters to be estimated– it might be undesirable to remove entire
genes from the analysis just because their data include a single count outlier. An alternate strategy
is to replace the outlier counts with the trimmed mean over all samples, adjusted by the size factor
or normalization factor for that sample. The following simple function performs this replacement
for the user. For more information on Cook’s distance, please see the two sections of the vignette:
’Dealing with count outliers’ and ’Count outlier detection’.

Usage

replaceOutliersWithTrimmedMean(dds, trim = 0.2,
cooksCutoff)

Arguments

dds a DESeqDataSet object, which has already been processed by either DESeq,
nbinomWaldTest or nbinomLRT, and therefore contains a matrix ’cooks’ con-
tained in assays(dds). These are the Cook’s distances which will be used to
define outlier counts.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of the nor-
malized counts for a gene before the mean is computed

cooksCutoff the threshold for defining an outlier to be replaced. Defaults to the .99 quantile
of the F(p, m - p) distribution, where p is the number of parameters and m is the
number of samples.

See Also

DESeq

Examples

dds <- makeExampleDESeqDataSet(n=100)
dds <- DESeq(dds)
ddsReplace <- replaceOutliersWithTrimmedMean(dds)

results Extract results from a DESeq analysis

Description

results extracts results from a DESeq analysis giving base means across samples, log2 fold
changes, standard errors, test statistics, p-values and adjusted p-values. resultsNames finds avail-
able names for results; removeResults returns a DESeqDataSet object with results columns re-
moved.

22 results

Usage

results(object, name, contrast, cooksCutoff,
independentFiltering = TRUE, alpha = 0.1, filter,
theta = seq(0, 0.95, by = 0.05), pAdjustMethod = "BH")

resultsNames(object)

removeResults(object)

Arguments

object a DESeqDataSet, on which one of the following functions has already been
called: DESeq, nbinomWaldTest, or nbinomLRT

name the name of the coefficient for which to report log2 fold changes – and for the
Wald test, p-values and adjusted p-values

contrast either a character vector with exactly three elements (name of the factor, name of
the numerator level, name of the denominator level), or a numeric contrast vector
with one element for each element in resultsNames(object), i.e. columns of
the model matrix. The DESeqDataSet must be one produced using the Wald test
steps in order to use contrasts.

cooksCutoff theshold on Cook’s distance, such that if one or more samples for a row have a
distance higher, the p-value for the row is set to NA. The default cutoff is the
.99 quantile of the F(p, m-p) distribution, where p is the number of coefficients
being fitted and m is the number of samples. Set to Inf or FALSE to disable
the resetting of p-values to NA. Note: this test excludes the Cook’s distance of
samples whose removal would result in rank deficient design matrix and samples
belonging to experimental groups with only 2 samples.

independentFiltering

logical, whether independent filtering should be applied automatically

alpha the significance cutoff used for optimizing the independent filtering

filter the vector of filter statistics over which the independent filtering will be opti-
mized. By default the mean of normalized counts is used.

theta the quantiles at which to assess the number of rejections from independent fil-
tering

pAdjustMethod the method to use for adjusting p-values, see ?p.adjust

Details

Multiple results can be returned for an analysis with multifactor design, so results takes an argu-
ment name as well as the argument contrast explained below.

The available names can be checked using resultsNames; these are combined variable names and
factor levels, potentially with minor changes made by the make.names function on column names
(e.g. dashes into periods).

By default, results for the last variable will be returned. Information on the variable represented
and the test used for p-values (Wald test or likelihood ratio test) is stored in the metadata columns,
accessible by calling mcol on the DataFrame returned by results.

results 23

By default, independent filtering is performed to select a set of genes which will result in the most
genes with adjusted p-values less than a threshold, alpha. The adjusted p-values for the genes
which do not pass the filter threshold are set to NA. By default, the mean of normalized counts
is used to perform this filtering, though other statistics can be provided. Several arguments from
the filtered_p function of genefilter are provided to control or turn off the independent filtering
behavior.

A contrast can be performed by specifying the variable and factor levels which should be compared,
or by specifying the numeric contrast vector. The test statistic is then:

ctβ/
√
ctΣc

For analyses using the likelihood ratio test (using nbinomLRT), the p-values are determined solely
by the difference in deviance between the full and reduced model formula. In this case, the name
argument only specifies which coefficient should be used for reporting the log2 fold changes.

Cook’s distance for each sample are accessible as a matrix "cooks" stored in the assays() list. This
measure is useful for identifying rows where the observed counts might not fit to a negative binomial
distribution.

Results can be removed from an object by calling removeResults

Value

For results: a DataFrame of results columns with metadata columns of coefficient and test infor-
mation

For resultsNames: the names of the columns available as results, usually a combination of the
variable name and a level

For removeResults: the original object with results metadata columns removed

References

Richard Bourgon, Robert Gentleman, Wolfgang Huber: Independent filtering increases detection
power for high-throughput experiments. PNAS (2010), http://dx.doi.org/10.1073/pnas.0914005107

See Also

DESeq

Examples

example("DESeq")
results(dds)
resultsNames(dds)
dds <- removeResults(dds)

http://dx.doi.org/10.1073/pnas.0914005107

24 rlogTransformation

rlogTransformation Apply a ’regularized log’ transformation

Description

This function uses Tikhonov/ridge regularization, as in nbinomWaldTest, to transform the data to
the log2 scale in a way which minimizes differences between samples for rows with small counts.
The transformation produces a similar variance stabilizing effect as varianceStabilizingTransformation,
though rlogTransformation is more robust in the case when the size factors vary widely. The
transformation is useful when checking for outliers or as input for machine learning techniques
such as clustering or linear discriminant analysis.

Usage

rlogTransformation(object, blind = TRUE, samplesVector,
betaPriorVar, intercept)

rlogData(object, samplesVector, betaPriorVar, intercept)

Arguments

object a DESeqDataSet

blind logical, whether to blind the transformation to the experimental design. blind=TRUE
should be used for comparing samples in an manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made.

samplesVector a character vector or factor of the sample identifiers

betaPriorVar a single value, the variance of the prior on the sample betas, which if missing is
estimated from the data

intercept by default, this is not provided and calculated automatically. if provided, this
should be a vector as long as the number of rows of object, which is log2 of the
mean normalized counts from a previous dataset. this will enforce the intercept
for the GLM, allowing for a "frozen" rlog transformation based on a previous
dataset.

Details

The ’regularization’ referred to here corresponds to the maximum a posteriori solution to the GLM
with a prior on the coefficients for each sample. The fitted dispersions are used rather than the MAP
dispersions (so similar to the varianceStabilizingTransformation) as the blind dispersion esti-
mation would otherwise shrink large, true log fold changes. The prior variance is calculated as fol-
lows: a matrix is constructed of the logarithm of the counts plus a pseudocount of 0.5, the row means
of these log counts are then subtracted, leaving an estimate of the log fold changes per sample. The
prior variance is set to the variance of all log fold change estimates. A second and final GLM fit

sizeFactors 25

is then performed using this prior. It is also possible to supply the variance of the prior. See the
vignette for an example of the use and a comparison with varianceStabilizingTransformation

The parameters of the rlog transformation from a previous dataset can be "frozen" and reapplied
to new samples. See the "Data quality assessment" section of the vignette for strategies to see if
new samples are sufficiently similar to previous datasets. The "freezing" is accomplished by saving
the dispersion function, beta prior variance and the intercept from a previous dataset, and running
rlogTransformation with ’blind’ set to FALSE (see example below).

Value

for rlogTransformation, a SummarizedExperiment with assay data elements equal to log2(qij) =
xj.βi, see formula at DESeq. for rlogData, a matrix of the same dimension as the count data, con-
taining the transformed values. To avoid returning matrices with NA values where there were zeros
for all rows of the unnormalized counts, rlogTransformation returns instead all zeros (essentially
adding a pseudocount of one, only to those rows in which all samples have zero).

See Also

plotPCA, varianceStabilizingTransformation

Examples

dds <- makeExampleDESeqDataSet(betaSD=1)
rld <- rlogTransformation(dds, blind=TRUE)
dists <- dist(t(assay(rld)))
plot(hclust(dists))

run the rlog transformation on one dataset
design(dds) <- ~ 1
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
rld <- rlogTransformation(dds, blind=FALSE)

apply the parameters to a new sample

ddsNew <- makeExampleDESeqDataSet(m=1)
mcols(ddsNew)$dispFit <- mcols(dds)$dispFit
betaPriorVar <- attr(rld,"betaPriorVar")
intercept <- mcols(rld)$rlogIntercept
rldNew <- rlogTransformation(ddsNew, blind=FALSE,

betaPriorVar=betaPriorVar,
intercept=intercept)

sizeFactors Accessor functions for the ’sizeFactors’ information in a DESeq-
DataSet object.

26 varianceStabilizingTransformation

Description

The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such that
count values in the columns can be brought to a common scale by dividing by the corresponding
size factor. See DESeq for a description of the use of size factors. If gene-specific normalization is
desired for each sample, use normalizationFactors.

Usage

S4 method for signature DESeqDataSet
sizeFactors(object)

S4 replacement method for signature DESeqDataSet,numeric
sizeFactors(object)<-value

Arguments

object a DESeqDataSet object.

value a numeric vector, one size factor for each column in the count data.

Author(s)

Simon Anders

See Also

estimateSizeFactors

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
sizeFactors(dds)

varianceStabilizingTransformation

Apply a variance stabilizing transformation (VST) to the count data

Description

This function calculates a variance stabilizing transformation (VST) from the fitted dispersion-mean
relation(s) and then transforms the count data (normalized by division by the size factors or normal-
ization factors), yielding a matrix of values which are now approximately homoskedastic (having
constant variance along the range of mean values). The rlogTransformation is less sensitive to
size factors, which can be an issue when size factors vary widely. This transformation is useful
when checking for outliers or as input for machine learning techniques such as clustering or linear
discriminant analysis.

varianceStabilizingTransformation 27

Usage

varianceStabilizingTransformation(object, blind = TRUE)

getVarianceStabilizedData(object)

Arguments

object a DESeqDataSet, with design(object) <- formula(~ 1) and size factors
(or normalization factors) and dispersions estimated using local or parametric
fitType.

blind logical, whether to blind the transformation to the experimental design. blind=TRUE
should be used for comparing samples in an manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made.

Details

For each sample (i.e., column of counts(dds)), the full variance function is calculated from the raw
variance (by scaling according to the size factor and adding the shot noise). We recommend a blind
estimation of the variance function, i.e., one ignoring conditions. This is performed by default, and
can be modified using the ’blind’ argument.

A typical workflow is shown in Section Variance stabilizing transformation in the package vignette.

If estimateDispersions was called with fitType="parametric", a closed-form expression for
the variance stabilizing transformation is used on the normalized count data. The expression can be
found in the file ‘vst.pdf’ which is distributed with the vignette.

If estimateDispersions was called with fitType="local", the reciprocal of the square root
of the variance of the normalized counts, as derived from the dispersion fit, is then numerically
integrated, and the integral (approximated by a spline function) is evaluated for each count value in
the column, yielding a transformed value.

In both cases, the transformation is scaled such that for large counts, it becomes asymptotically (for
large values) equal to the logarithm to base 2.

The variance stabilizing transformation from a previous dataset can be "frozen" and reapplied to
new samples. See the "Data quality assessment" section of the vignette for strategies to see if new
samples are sufficiently similar to previous datasets. The "freezing" is accomplished by saving the
dispersion function accessible with dispersionFunction, assigning this to the DESeqDataSet with
the new samples, and running varianceStabilizingTransformation with ’blind’ set to FALSE (see
example below). Then the dispersion function from the previous dataset will be used to transform
the new sample(s). See estimateSizeFactors for details on how to "freeze" size factor estimation.

Limitations: In order to preserve normalization, the same transformation has to be used for all
samples. This results in the variance stabilizition to be only approximate. The more the size factors
differ, the more residual dependence of the variance on the mean you will find in the transformed
data. As shown in the vignette, you can use the function meanSdPlot from the package vsn to see
whether this is a problem for your data.

28 varianceStabilizingTransformation

Value

for varianceStabilizingTransformation, a SummarizedExperiment. for getVarianceStabilizedData,
a matrix of the same dimension as the count data, containing the transformed values.

Author(s)

Simon Anders

See Also

plotPCA, rlogTransformation

Examples

dds <- makeExampleDESeqDataSet()
vsd <- varianceStabilizingTransformation(dds, blind=TRUE)
par(mfrow=c(1,2))
plot(rank(rowMeans(counts(dds))), genefilter::rowVars(log2(counts(dds)+1)),

main="log2(x+1) transform")
plot(rank(rowMeans(assay(vsd))), genefilter::rowVars(assay(vsd)),

main="VST")

learn the dispersion function of a dataset
design(dds) <- ~ 1
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)

use the previous dispersion function for a new sample
ddsNew <- makeExampleDESeqDataSet(m=1)
dispersionFunction(ddsNew) <- dispersionFunction(dds)
vsdNew <- varianceStabilizingTransformation(ddsNew, blind=FALSE)

Index

counts, 2
counts,DESeqDataSet-method (counts), 2
counts<-,DESeqDataSet,matrix-method

(counts), 2

DESeq, 3, 11, 15, 17, 19, 21–23, 25, 26
DESeqDataSet, 3, 4, 4, 11, 13
DESeqDataSet-class (DESeqDataSet), 4
DESeqDataSetFromHTSeqCount, 3
DESeqDataSetFromHTSeqCount

(DESeqDataSet), 4
DESeqDataSetFromMatrix, 3
DESeqDataSetFromMatrix (DESeqDataSet), 4
design, 6
design,DESeqDataSet-method (design), 6
design<-,DESeqDataSet,formula-method

(design), 6
dispersionFunction, 6, 8, 27
dispersionFunction,DESeqDataSet-method

(dispersionFunction), 6
dispersionFunction<-

(dispersionFunction), 6
dispersionFunction<-,DESeqDataSet,function-method

(dispersionFunction), 6
dispersions, 7, 9
dispersions,DESeqDataSet-method

(dispersions), 7
dispersions<- (dispersions), 7
dispersions<-,DESeqDataSet,numeric-method

(dispersions), 7

estimateDispersions, 3, 6, 7, 8, 9, 10, 27
estimateDispersions,DESeqDataSet-method

(estimateDispersions), 8
estimateDispersionsFit, 9
estimateDispersionsFit

(estimateDispersionsGeneEst), 9
estimateDispersionsGeneEst, 9, 9
estimateDispersionsMAP, 9

estimateDispersionsMAP
(estimateDispersionsGeneEst), 9

estimateSizeFactors, 3, 11, 12, 13, 26, 27
estimateSizeFactors,DESeqDataSet-method

(estimateSizeFactors), 11
estimateSizeFactorsForMatrix, 11, 12, 12

getVarianceStabilizedData
(varianceStabilizingTransformation),
26

makeExampleDESeqDataSet, 13

nbinomLRT, 3, 4, 14, 16, 19, 22, 23
nbinomWaldTest, 3, 4, 14, 15, 15, 19, 22, 24
normalizationFactors, 2, 4, 11, 14, 15, 16,

26
normalizationFactors,DESeqDataSet-method

(normalizationFactors), 16
normalizationFactors<-

(normalizationFactors), 16
normalizationFactors<-,DESeqDataSet,matrix-method

(normalizationFactors), 16

plotDispEsts, 17
plotDispEsts,DESeqDataSet-method

(plotDispEsts), 17
plotMA, 18
plotMA,DESeqDataSet-method (plotMA), 18
plotPCA, 20, 25, 28

removeResults (results), 21
replaceOutliersWithTrimmedMean, 20
results, 4, 14, 16, 21, 21
resultsNames (results), 21
rlogData (rlogTransformation), 24
rlogTransformation, 20, 24, 26, 28

shorth, 11, 12
sizeFactors, 2, 11, 14–17, 25

29

30 INDEX

sizeFactors,DESeqDataSet-method
(sizeFactors), 25

sizeFactors<-,DESeqDataSet,numeric-method
(sizeFactors), 25

varianceStabilizingTransformation, 6, 9,
20, 24, 25, 26

	counts
	DESeq
	DESeqDataSet
	design
	dispersionFunction
	dispersions
	estimateDispersions
	estimateDispersionsGeneEst
	estimateSizeFactors
	estimateSizeFactorsForMatrix
	makeExampleDESeqDataSet
	nbinomLRT
	nbinomWaldTest
	normalizationFactors
	plotDispEsts
	plotMA
	plotPCA
	replaceOutliersWithTrimmedMean
	results
	rlogTransformation
	sizeFactors
	varianceStabilizingTransformation
	Index

