% \VignetteIndexEntry{An introduction to ReactomePA} % \VignetteDepends{AnnotationDbi, org.Hs.eg.db, igraph, plyr, methods, % qvalue, reactome.db} % \VignetteSuggests{GOSemSim, clusterProfiler, DOSE} % \VignetteKeywords{reactome, Pathway Analysis} % \VignettePackage{rPA} %\SweaveOpts{prefix.string=images/fig} \documentclass[a4paper]{article} \usepackage{Sweave} \usepackage{a4wide} \usepackage{times} \usepackage{hyperref} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{framed} \usepackage{longtable} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage[authoryear,round]{natbib} \textwidth=6.2in \textheight=8.5in %\parskip=.3cm \oddsidemargin=.1in \evensidemargin=.1in \headheight=-.3in \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpackage}[1]{{\textit{#1}}} \newcommand{\Rmethod}[1]{{\texttt{#1}}} \newcommand{\Rfunarg}[1]{{\texttt{#1}}} \newcommand{\Rclass}[1]{{\textit{#1}}} \newcommand{\Rcode}[1]{{\texttt{#1}}} \newtheorem{theorem}{Theorem}[section] \newcommand{\R}{\textsf{R}} \newcommand{\term}[1]{\emph{#1}} \newcommand{\mref}[2]{\htmladdnormallinkfoot{#2}{#1}} \bibliographystyle{plainnat} \title{Reactome Pathway Analysis} \author{Guangchuang Yu \\ \\ Jinan University, Guangzhou, China} \begin{document} \maketitle <>= options(width=60) require(ReactomePA) @ \section{Introduction} This package is designed for reactome pathway-based analysis. Reactome is an open-source, open access, manually curated and peer-reviewed pathway database. In \Rpackage{ReactomePA}, we plan to implement: \begin{itemize} \item pathway enrichment analysis \item gene set enrichment analysis \item functional subpathway (active or perturbed subpathway) detection \item methods for visualization. \end{itemize} \section{Pathway Enrichment Analysis} Enrichment analysis is a widely used approach to identify biological themes. Here, we implement hypergeometric model to assess whether the number of selected genes associated with reactome pathway is larger than expected. We also implement a category net model for viusalization. \begin{itemize} \item Hypergeometric model Hypergeometric model was implemented to assess whether the number of selected genes associated with reactome pathway is larger than expected. \item Category Net Plot Category-gene network model was implemented to extract the complex relationships between genes and pathways. It provides a high-level model to understand the functionalities of genes. \item Case Study Here, we used a vector of sample entrezgene ID, which was converted from an example list of genes from ProfCom \url{http://webclu.bio.wzw.tum.de/profcom/examples.php}. <>= require(ReactomePA) data(sample) sample x <- enrichPathway(gene=sample,pvalueCutoff=0.05, qvalueCutoff=0.05, readable=T) head(summary(x)) @ <<>= plot(x, showCategory=5) @ \begin{figure}[h] \begin{center} \includegraphics[width=\linewidth]{cnetplot.pdf} \caption{Visualization of Pathway enrichment analysis} \label{Fig:cnetplot} \end{center} \end{figure} \item Compatibal with \Rpackage{clusterProfiler} Bioconductor package \Rpackage{clusterProfiler} designed visualization for comparing biological themes among gene clusters \citep{yu2012}. More details and parameters are described in the documentation (Rfunction{?compareCluster}). Figure 2 has been generated using the data, as in \cite{yu2012}. \begin{figure}[h] \begin{center} \includegraphics[width=.7\linewidth]{rPAclusterProfiler.pdf} \caption{Example of working with clusterProfiler package} \label{Fig:Pathway Comparison} \end{center} \end{figure} \end{itemize} \section{Gene Set Enrichment Analysis} To be developed. \section{Session Information} The version number of R and packages loaded for generating the vignette were: \begin{verbatim} <>= sessionInfo() @ \end{verbatim} \bibliography{ReactomePA} \end{document}