### R code from vignette source 'vignettes/GSVA/inst/doc/GSVA.Rnw' ################################################### ### code chunk number 1: options ################################################### options(width=60) pdf.options(useDingbats=FALSE) ################################################### ### code chunk number 2: GSVA.Rnw:163-176 ################################################### library(GSVA) p <- 20000 ## number of genes n <- 30 ## number of samples nGS <- 100 ## number of gene sets min.sz <- 10 ## minimum gene set size max.sz <- 100 ## maximum gene set size X <- matrix(rnorm(p*n), nrow=p, dimnames=list(1:p, 1:n)) dim(X) gs <- as.list(sample(min.sz:max.sz, size=nGS, replace=TRUE)) ## sample gene set sizes gs <- lapply(gs, function(n, p) sample(1:p, size=n, replace=FALSE), p) ## sample gene sets es.max <- gsva(X, gs, mx.diff=FALSE, verbose=FALSE, parallel.sz=1)$es.obs es.dif <- gsva(X, gs, mx.diff=TRUE, verbose=FALSE, parallel.sz=1)$es.obs ################################################### ### code chunk number 3: maxvsdif ################################################### par(mfrow=c(1,2), mar=c(4, 4, 4, 1)) plot(density(as.vector(es.max)), main="Maximum deviation from zero", xlab="GSVA score", lwd=2, las=1, xaxt="n", xlim=c(-0.75, 0.75), cex.axis=0.8) axis(1, at=seq(-0.75, 0.75, by=0.25), labels=seq(-0.75, 0.75, by=0.25), cex.axis=0.8) plot(density(as.vector(es.dif)), main="Difference between largest\npositive and negative deviations", xlab="GSVA score", lwd=2, las=1, xaxt="n", xlim=c(-0.75, 0.75), cex.axis=0.8) axis(1, at=seq(-0.75, 0.75, by=0.25), labels=seq(-0.75, 0.75, by=0.25), cex.axis=0.8) ################################################### ### code chunk number 4: GSVA.Rnw:307-312 ################################################### library(GSEABase) library(GSVAdata) data(c2BroadSets) c2BroadSets ################################################### ### code chunk number 5: GSVA.Rnw:317-322 ################################################### library(Biobase) library(genefilter) library(limma) library(RColorBrewer) library(GSVA) ################################################### ### code chunk number 6: GSVA.Rnw:328-330 ################################################### cacheDir <- system.file("extdata", package="GSVA") cachePrefix <- "cache4vignette_" ################################################### ### code chunk number 7: GSVA.Rnw:336-337 (eval = FALSE) ################################################### ## file.remove(paste(cacheDir, list.files(cacheDir, pattern=cachePrefix), sep="/")) ################################################### ### code chunk number 8: GSVA.Rnw:359-363 ################################################### data(leukemia) leukemia_eset head(pData(leukemia_eset)) table(leukemia_eset$subtype) ################################################### ### code chunk number 9: figIQR ################################################### png(filename="GSVA-figIQR.png", width=500, height=500, res=150) IQRs <- esApply(leukemia_eset, 1, IQR) plot.ecdf(IQRs, pch=".", xlab="Interquartile range (IQR)", main="Leukemia data") abline(v=quantile(IQRs, prob=0.5), lwd=2, col="red") dev.off() ################################################### ### code chunk number 10: GSVA.Rnw:391-396 ################################################### filtered_eset <- nsFilter(leukemia_eset, require.entrez=TRUE, remove.dupEntrez=TRUE, var.func=IQR, var.filter=TRUE, var.cutoff=0.5, filterByQuantile=TRUE, feature.exclude="^AFFX") filtered_eset leukemia_filtered_eset <- filtered_eset$eset ################################################### ### code chunk number 11: GSVA.Rnw:410-413 ################################################### cache(leukemia_es <- gsva(leukemia_filtered_eset, c2BroadSets, min.sz=10, max.sz=500, verbose=TRUE)$es.obs, dir=cacheDir, prefix=cachePrefix) ################################################### ### code chunk number 12: GSVA.Rnw:423-425 ################################################### adjPvalueCutoff <- 0.001 logFCcutoff <- log2(2) ################################################### ### code chunk number 13: GSVA.Rnw:430-439 ################################################### design <- model.matrix(~ factor(leukemia_es$subtype)) colnames(design) <- c("ALL", "MLLvsALL") fit <- lmFit(leukemia_es, design) fit <- eBayes(fit) allGeneSets <- topTable(fit, coef="MLLvsALL", number=Inf) DEgeneSets <- topTable(fit, coef="MLLvsALL", number=Inf, p.value=adjPvalueCutoff, adjust="BH") res <- decideTests(fit, p.value=adjPvalueCutoff) summary(res) ################################################### ### code chunk number 14: GSVA.Rnw:445-455 ################################################### logFCcutoff <- log2(2) design <- model.matrix(~ factor(leukemia_eset$subtype)) colnames(design) <- c("ALL", "MLLvsALL") fit <- lmFit(leukemia_filtered_eset, design) fit <- eBayes(fit) allGenes <- topTable(fit, coef="MLLvsALL", number=Inf) DEgenes <- topTable(fit, coef="MLLvsALL", number=Inf, p.value=adjPvalueCutoff, adjust="BH", lfc=logFCcutoff) res <- decideTests(fit, p.value=adjPvalueCutoff, lfc=logFCcutoff) summary(res) ################################################### ### code chunk number 15: leukemiaVolcano ################################################### png(filename="GSVA-leukemiaVolcano.png", width=800, height=500) par(mfrow=c(1,2)) plot(allGeneSets$logFC, -log10(allGeneSets$P.Value), pch=".", cex=4, col=grey(0.75), main="Gene sets", xlab="GSVA enrichment score difference", ylab=expression(-log[10]~~~Raw~P-value)) abline(h=-log10(max(allGeneSets$P.Value[allGeneSets$adj.P.Val <= adjPvalueCutoff])), col=grey(0.5), lwd=1, lty=2) points(allGeneSets$logFC[match(DEgeneSets$ID, allGeneSets$ID)], -log10(allGeneSets$P.Value[match(DEgeneSets$ID, allGeneSets$ID)]), pch=".", cex=4, col="red") text(max(allGeneSets$logFC)*0.85, -log10(max(allGeneSets$P.Value[allGeneSets$adj.P.Val <= adjPvalueCutoff])), sprintf("%.1f%% FDR", 100*adjPvalueCutoff), pos=1) plot(allGenes$logFC, -log10(allGenes$P.Value), pch=".", cex=4, col=grey(0.75), main="Genes", xlab="Log fold-change", ylab=expression(-log[10]~~~Raw~P-value)) abline(h=-log10(max(allGenes$P.Value[allGenes$adj.P.Val <= adjPvalueCutoff])), col=grey(0.5), lwd=1, lty=2) abline(v=c(-logFCcutoff, logFCcutoff), col=grey(0.5), lwd=1, lty=2) points(allGenes$logFC[match(DEgenes$ID, allGenes$ID)], -log10(allGenes$P.Value[match(DEgenes$ID, allGenes$ID)]), pch=".", cex=4, col="red") text(max(allGenes$logFC)*0.85, -log10(max(allGenes$P.Value[allGenes$adj.P.Val <= adjPvalueCutoff])), sprintf("%.1f%% FDR", 100*adjPvalueCutoff), pos=1) dev.off() ################################################### ### code chunk number 16: leukemiaHeatmapGeneSets ################################################### png(filename="GSVA-leukemiaHeatmapGeneSets.png", width=500, height=500) GSVAsco <- exprs(leukemia_es[DEgeneSets$ID, ]) colorLegend <- c("darkred", "darkblue") names(colorLegend) <- c("ALL", "MLL") sample.color.map <- colorLegend[pData(leukemia_es)[, "subtype"]] names(sample.color.map) <- colnames(GSVAsco) sampleClustering <- hclust(as.dist(1-cor(GSVAsco, method="spearman")), method="complete") geneSetClustering <- hclust(as.dist(1-cor(t(GSVAsco), method="pearson")), method="complete") heatmap(GSVAsco, ColSideColors=sample.color.map, xlab="samples", ylab="Gene sets and pathways", margins=c(2, 20), labRow=substr(gsub("_", " ", gsub("^KEGG_|^REACTOME_|^BIOCARTA_", "", rownames(GSVAsco))), 1, 35), labCol="", scale="row", Colv=as.dendrogram(sampleClustering), Rowv=as.dendrogram(geneSetClustering)) legend("topleft", names(colorLegend), fill=colorLegend, inset=0.01, bg="white") dev.off() ################################################### ### code chunk number 17: leukemiaHeatmapGenes ################################################### png(filename="GSVA-leukemiaHeatmapGenes.png", width=500, height=500) exps <- exprs(leukemia_eset[DEgenes$ID, ]) colorLegend <- c("darkred", "darkblue") names(colorLegend) <- c("ALL", "MLL") sample.color.map <- colorLegend[pData(leukemia_eset)[, "subtype"]] names(sample.color.map) <- colnames(exps) sampleClustering <- hclust(as.dist(1-cor(exps, method="spearman")), method="complete") geneClustering <- hclust(as.dist(1-cor(t(exps), method="pearson")), method="complete") heatmap(exps, ColSideColors=sample.color.map, xlab="samples", ylab="Genes", labRow="", labCol="", scale="row", Colv=as.dendrogram(sampleClustering), Rowv=as.dendrogram(geneClustering), margins=c(2,2)) legend("topleft", names(colorLegend), fill=colorLegend, inset=0.01, bg="white") dev.off() ################################################### ### code chunk number 18: GSVA.Rnw:562-569 ################################################### data(gbm_VerhaakEtAl) gbm_eset head(featureNames(gbm_eset)) table(gbm_eset$subtype) data(brainTxDbSets) sapply(brainTxDbSets, length) lapply(brainTxDbSets, head) ################################################### ### code chunk number 19: GSVA.Rnw:574-575 ################################################### gbm_es <- gsva(gbm_eset, brainTxDbSets, mx.diff=FALSE, verbose=FALSE, parallel.sz=1)$es.obs ################################################### ### code chunk number 20: gbmSignature ################################################### png(filename="GSVA-gbmSignature.png", width=700, height=500) subtypeOrder <- c("Proneural", "Neural", "Classical", "Mesenchymal") sampleOrderBySubtype <- sort(match(gbm_es$subtype, subtypeOrder), index.return=TRUE)$ix subtypeXtable <- table(gbm_es$subtype) subtypeColorLegend <- c(Proneural="red", Neural="green", Classical="blue", Mesenchymal="orange") geneSetOrder <- c("astroglia_up", "astrocytic_up", "neuronal_up", "oligodendrocytic_up") geneSetLabels <- gsub("_", " ", geneSetOrder) hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256) hmcol <- hmcol[length(hmcol):1] heatmap(exprs(gbm_es)[geneSetOrder, sampleOrderBySubtype], Rowv=NA, Colv=NA, scale="row", margins=c(3,5), col=hmcol, ColSideColors=rep(subtypeColorLegend[subtypeOrder], times=subtypeXtable[subtypeOrder]), labCol="", gbm_es$subtype[sampleOrderBySubtype], labRow=paste(toupper(substring(geneSetLabels, 1,1)), substring(geneSetLabels, 2), sep=""), cexRow=2, main=" \n ") par(xpd=TRUE) text(0.22,1.11, "Proneural", col="red", cex=1.2) text(0.36,1.11, "Neural", col="green", cex=1.2) text(0.48,1.11, "Classical", col="blue", cex=1.2) text(0.66,1.11, "Mesenchymal", col="orange", cex=1.2) mtext("Gene sets", side=4, line=0, cex=1.5) mtext("Samples ", side=1, line=4, cex=1.5) dev.off() ################################################### ### code chunk number 21: GSVA.Rnw:649-684 ################################################### runSim <- function(p, n, gs.sz, S2N, fracDEgs) { sizeDEgs <- round(fracDEgs * gs.sz) group.n <- round(n / 2) sampleEffect <- rnorm(n, mean=0, sd=1) sampleEffectDE <- rnorm(n, mean=S2N, sd=0.5) probeEffect <- rnorm(p, mean=0, sd=1) noise <- matrix(rnorm(p*n, mean=0, sd=1), nrow=p, ncol=n) noiseDE <- matrix(rnorm(p*n, mean=0, sd=1), nrow=p, ncol=n) M <- outer(probeEffect, sampleEffect, "+") + noise M2 <- outer(probeEffect, sampleEffectDE, "+") + noiseDE M[1:sizeDEgs, 1:group.n] <- M2[1:sizeDEgs, 1:group.n] rownames(M) <- paste0("g", 1:nrow(M)) geneSets <- list(H1GeneSet=paste0("g", 1:(gs.sz)), H0GeneSet=paste0("g", (gs.sz+1):(2*gs.sz))) es.gsva <- gsva(M, geneSets, verbose=FALSE, parallel.sz=1)$es.obs es.ss <- gsva(M, geneSets, method="ssgsea", verbose=FALSE, parallel.sz=1) es.z <- gsva(M, geneSets, method="zscore", verbose=FALSE, parallel.sz=1) es.plage <- gsva(M, geneSets, method="plage", verbose=FALSE, parallel.sz=1) h1.gsva.pval <- t.test(es.gsva["H1GeneSet", 1:group.n],es.gsva["H1GeneSet", (group.n+1):n])$p.value h1.ssgsea.pval <- t.test(es.ss["H1GeneSet", 1:group.n],es.ss["H1GeneSet", (group.n+1):n])$p.value h1.zscore.pval <- t.test(es.z["H1GeneSet", 1:group.n],es.z["H1GeneSet", (group.n+1):n])$p.value h1.plage.pval <- t.test(es.plage["H1GeneSet", 1:group.n],es.plage["H1GeneSet", (group.n+1):n])$p.value h0.gsva.pval <- t.test(es.gsva["H0GeneSet", 1:group.n],es.gsva["H0GeneSet", (group.n+1):n])$p.value h0.ssgsea.pval <- t.test(es.ss["H0GeneSet", 1:group.n],es.ss["H0GeneSet", (group.n+1):n])$p.value h0.zscore.pval <- t.test(es.z["H0GeneSet", 1:group.n],es.z["H0GeneSet", (group.n+1):n])$p.value h0.plage.pval <- t.test(es.plage["H0GeneSet", 1:group.n],es.plage["H0GeneSet", (group.n+1):n])$p.value c(h1.gsva.pval, h1.ssgsea.pval, h1.zscore.pval, h1.plage.pval, h0.gsva.pval, h0.ssgsea.pval, h0.zscore.pval, h0.plage.pval) } ################################################### ### code chunk number 22: GSVA.Rnw:691-696 ################################################### estPwrTypIerr <- function(pvals, alpha=0.05) { N <- ncol(pvals) c(1 - sum(pvals[1, ] > alpha)/N, 1 - sum(pvals[2, ] > alpha)/N,1 - sum(pvals[3, ] > alpha)/N, 1 - sum(pvals[4, ] > alpha)/N, sum(pvals[5, ] <= alpha)/N, sum(pvals[6, ] <= alpha)/N, sum(pvals[7, ] <= alpha)/N, sum(pvals[8, ] <= alpha)/N) } ################################################### ### code chunk number 23: GSVA.Rnw:705-726 ################################################### set.seed(1234) exp1 <- cbind(estPwrTypIerr(replicate(60, runSim(1000, 10, gs.sz=30, S2N=0.5, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 20, gs.sz=30, S2N=0.5, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 40, gs.sz=30, S2N=0.5, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 60, gs.sz=30, S2N=0.5, fracDEgs=0.5)))) exp2 <- cbind(estPwrTypIerr(replicate(60, runSim(1000, 10, gs.sz=30, S2N=1.0, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 20, gs.sz=30, S2N=1.0, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 40, gs.sz=30, S2N=1.0, fracDEgs=0.5))), estPwrTypIerr(replicate(60, runSim(1000, 60, gs.sz=30, S2N=1.0, fracDEgs=0.5)))) exp3 <- cbind(estPwrTypIerr(replicate(60, runSim(1000, 10, gs.sz=30, S2N=0.5, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 20, gs.sz=30, S2N=0.5, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 40, gs.sz=30, S2N=0.5, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 60, gs.sz=30, S2N=0.5, fracDEgs=0.8)))) exp4 <- cbind(estPwrTypIerr(replicate(60, runSim(1000, 10, gs.sz=30, S2N=1.0, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 20, gs.sz=30, S2N=1.0, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 40, gs.sz=30, S2N=1.0, fracDEgs=0.8))), estPwrTypIerr(replicate(60, runSim(1000, 60, gs.sz=30, S2N=1.0, fracDEgs=0.8)))) ################################################### ### code chunk number 24: powertype1errsim ################################################### plotPower <- function(statpower, main, legendposition="bottomright", ...) { plot(statpower[1,], ylim=c(0, 1.0), type="b", lwd=2, pch=1, main=main, col="blue", ylab="Statistcal Power", xlab="Sample Size", xaxt="n") lines(statpower[2,], col="red", type="b", lwd=2, pch=2) lines(statpower[3,], col="darkgreen", type="b", lwd=2, pch=3) lines(statpower[4,], col="lightgreen", type="b", lwd=2, pch=4) if (!is.null(legendposition)) legend(legendposition, c("GSVA","ssGSEA","z-score","PLAGE"), col=c("blue","red","darkgreen","lightgreen"),pch=1:4,lty=1,lwd=2,inset=0.02) axis(1,at=1:4, labels=c("10","20","40","60")) } plotType1Error <- function(tmp, title, legendposition="bottomright", alpha=0.05, ...){ plot(tmp[5,],ylim=c(0, 0.2),type="b",lwd=2,pch=1, col="blue",ylab="Empirical Type-I Error",xlab="Sample Size",xaxt="n",main=title, ...) lines(tmp[6,],col="red",type="b",lwd=2,pch=2) lines(tmp[7,],col="darkgreen",type="b",lwd=2,pch=3) lines(tmp[8,],col="lightgreen",type="b",lwd=2,pch=4) if (!is.null(legendposition)) legend(legendposition,c("GSVA","ssGSEA","z-score","PLAGE"),col=c("blue","red","darkgreen","lightgreen"),pch=1:4,lty=1,lwd=2,inset=0.02) axis(1,at=c(1:dim(tmp)[2]), labels=c("10","20","40","60")) abline(h=alpha, lty=2) } labelPlot <- function(lab, font, cex, offsetx=0.05, offsety=0.05) { par(xpd=TRUE) w <- par("usr")[2] - par("usr")[1] h <- par("usr")[4] - par("usr")[3] text(par("usr")[1]-w*offsetx, par("usr")[4]+h*offsety, lab, font=font, cex=cex) par(xpd=FALSE) } par(mfrow=c(4,2), mar=c(4, 4, 2, 1)) plotPower(exp1, main="", legendposition=NULL, las=1) labelPlot("A", 2, 2, 0.2, 0.15) plotType1Error(exp1,"",legendposition="topright", las=1) labelPlot("B", 2, 2, 0.2, 0.15) plotPower(exp2, main="", legendposition=NULL, las=1) labelPlot("C", 2, 2, 0.2, 0.15) plotType1Error(exp2,"",legendposition="topright", las=1) labelPlot("D", 2, 2, 0.2, 0.15) plotPower(exp3, main="", legendposition=NULL, las=1) labelPlot("E", 2, 2, 0.2, 0.15) plotType1Error(exp3,"",legendposition="topright", las=1) labelPlot("F", 2, 2, 0.2, 0.15) plotPower(exp4, main="", legendposition=NULL, las=1) labelPlot("G", 2, 2, 0.2, 0.15) plotType1Error(exp4,"",legendposition="topright", las=1) labelPlot("H", 2, 2, 0.2, 0.15) ################################################### ### code chunk number 25: GSVA.Rnw:808-814 ################################################### data(commonPickrellHuang) stopifnot(identical(featureNames(huangArrayRMAnoBatchCommon_eset), featureNames(pickrellCountsArgonneCQNcommon_eset))) stopifnot(identical(sampleNames(huangArrayRMAnoBatchCommon_eset), sampleNames(pickrellCountsArgonneCQNcommon_eset))) ################################################### ### code chunk number 26: GSVA.Rnw:820-824 ################################################### canonicalC2BroadSets <- c2BroadSets[c(grep("^KEGG", names(c2BroadSets)), grep("^REACTOME", names(c2BroadSets)), grep("^BIOCARTA", names(c2BroadSets)))] canonicalC2BroadSets ################################################### ### code chunk number 27: < ################################################### data(genderGenesEntrez) MSY <- GeneSet(msYgenesEntrez, geneIdType=EntrezIdentifier(), collectionType=BroadCollection(category="c2"), setName="MSY") MSY XiE <- GeneSet(XiEgenesEntrez, geneIdType=EntrezIdentifier(), collectionType=BroadCollection(category="c2"), setName="XiE") XiE canonicalC2BroadSets <- GeneSetCollection(c(canonicalC2BroadSets, MSY, XiE)) canonicalC2BroadSets ################################################### ### code chunk number 28: < ################################################### esmicro <- gsva(huangArrayRMAnoBatchCommon_eset, canonicalC2BroadSets, min.sz=5, max.sz=500, mx.diff=TRUE, verbose=FALSE, rnaseq=FALSE, parallel.sz=1)$es.obs dim(esmicro) esrnaseq <- gsva(pickrellCountsArgonneCQNcommon_eset, canonicalC2BroadSets, min.sz=5, max.sz=500, mx.diff=TRUE, verbose=FALSE, rnaseq=TRUE, parallel.sz=1)$es.obs dim(esrnaseq) ################################################### ### code chunk number 29: GSVA.Rnw:861-876 ################################################### library(edgeR) data(annotEntrez220212) head(annotEntrez220212) cpm <- cpm(exprs(pickrellCountsArgonneCQNcommon_eset)) dim(cpm) common <- intersect(rownames(cpm), rownames(annotEntrez220212)) length(common) rpkm <- sweep(cpm[common, ], 1, annotEntrez220212[common, "Length"] / 10^3, FUN="/") dim(rpkm) dim(huangArrayRMAnoBatchCommon_eset[rownames(rpkm), ]) ################################################### ### code chunk number 30: GSVA.Rnw:882-891 ################################################### corsrowsgene <- sapply(1:nrow(huangArrayRMAnoBatchCommon_eset[rownames(rpkm), ]), function(i, expmicro, exprnaseq) cor(expmicro[i, ], exprnaseq[i, ], method="pearson"), exprs(huangArrayRMAnoBatchCommon_eset[rownames(rpkm), ]), log2(rpkm+0.1)) names(corsrowsgene) <- rownames(rpkm) corsrowsgs <- sapply(1:nrow(esmicro), function(i, esmicro, esrnaseq) cor(esmicro[i, ], esrnaseq[i, ], method="spearman"), exprs(esmicro), exprs(esrnaseq)) names(corsrowsgs) <- rownames(esmicro) ################################################### ### code chunk number 31: RNAseqComp ################################################### png(filename="GSVA-RNAseqComp.png", width=1100, height=1100, res=150) par(mfrow=c(2,2), mar=c(4, 5, 3, 2)) hist(corsrowsgene, xlab="Spearman correlation", main="Gene level\n(RNA-seq RPKM vs Microarray RMA)", xlim=c(-1, 1), col="grey", las=1) par(xpd=TRUE) text(par("usr")[1]*1.5, par("usr")[4]*1.1, "A", font=2, cex=2) par(xpd=FALSE) hist(corsrowsgs, xlab="Spearman correlation", main="Gene set level\n(GSVA enrichment scores)", xlim=c(-1, 1), col="grey", las=1) par(xpd=TRUE) text(par("usr")[1]*1.5, par("usr")[4]*1.1, "B", font=2, cex=2) par(xpd=FALSE) plot(exprs(esrnaseq)["MSY", ], exprs(esmicro)["MSY", ], xlab="GSVA scores RNA-seq", ylab="GSVA scores microarray", main=sprintf("MSY R=%.2f", cor(exprs(esrnaseq)["MSY", ], exprs(esmicro)["MSY", ])), las=1, type="n") sprintf("MSY R=%.2f", cor(exprs(esrnaseq)["MSY", ], exprs(esmicro)["MSY", ])) abline(lm(exprs(esmicro)["MSY", ] ~ exprs(esrnaseq)["MSY", ]), lwd=2, lty=2, col="grey") points(exprs(esrnaseq)["MSY", pickrellCountsArgonneCQNcommon_eset$Gender == "Female"], exprs(esmicro)["MSY", huangArrayRMAnoBatchCommon_eset$Gender == "Female"], col="red", pch=21, bg="red", cex=1) points(exprs(esrnaseq)["MSY", pickrellCountsArgonneCQNcommon_eset$Gender == "Male"], exprs(esmicro)["MSY", huangArrayRMAnoBatchCommon_eset$Gender == "Male"], col="blue", pch=21, bg="blue", cex=1) par(xpd=TRUE) text(par("usr")[1]*1.5, par("usr")[4]*1.1, "C", font=2, cex=2) par(xpd=FALSE) plot(exprs(esrnaseq)["XiE", ], exprs(esmicro)["XiE", ], xlab="GSVA scores RNA-seq", ylab="GSVA scores microarray", main=sprintf("XiE R=%.2f", cor(exprs(esrnaseq)["XiE", ], exprs(esmicro)["XiE", ])), las=1, type="n") abline(lm(exprs(esmicro)["XiE", ] ~ exprs(esrnaseq)["XiE", ]), lwd=2, lty=2, col="grey") points(exprs(esrnaseq["XiE", pickrellCountsArgonneCQNcommon_eset$Gender == "Female"]), exprs(esmicro)["XiE", huangArrayRMAnoBatchCommon_eset$Gender == "Female"], col="red", pch=21, bg="red", cex=1) points(exprs(esrnaseq)["XiE", pickrellCountsArgonneCQNcommon_eset$Gender == "Male"], exprs(esmicro)["XiE", huangArrayRMAnoBatchCommon_eset$Gender == "Male"], col="blue", pch=21, bg="blue", cex=1) par(xpd=TRUE) text(par("usr")[1]*1.5, par("usr")[4]*1.1, "D", font=2, cex=2) par(xpd=FALSE) dev.off() ################################################### ### code chunk number 32: info ################################################### toLatex(sessionInfo())