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1 Introduction

This document offers an introduction and overview of the R Bioconductor package DiffBind ,
which provides functions for processing ChIP-Seq data enriched for genomic loci where specific
protein/DNA binding occurs, including peak sets identified by ChIP-Seq peak callers and aligned
sequence read datasets. It is designed to work with multiple peak sets simultaneously, representing
different ChIP experiments (antibodies, transcription factor and/or histone marks, experimental
conditions, replicates) as well as managing the results of multiple peak callers.

The primary emphasis of the package is on identifying sites that are differentially bound between
two sample groups. It includes functions to support the processing of peak sets, including over-
lapping and merging peak sets, counting sequencing reads overlapping intervals in peak sets, and
identifying statistically significantly differentially bound sites based on evidence of binding affinity
(measured by differences in read densities). To this end it uses statistical routines developed in
an RNA-Seq context (primarily the Bioconductor packages edgeR and DESeq ). Additionally, the
package builds on R graphics routines to provide a set of standardized plots to aid in binding
analysis.

This guide includes a brief overview of the processing flow, followed by three sections of exam-
ples: the first focusing on the core task of obtaining differentially bound sites based on affinity data,
the second working through the main plotting routines, and the third revisiting occupancy data
(peak calls) in more detail, as well as comparing the results of an occupancy-based analysis with
an affinity-based one. Finally, some technical aspects of the how these analyses are accomplished
are detailed.

2 Processing overview

DiffBind works primarily with peaksets, which are sets of genomic intervals representing candidate
protein binding sites. Each interval consists of a chromosome, a start and end position, and usually
a score of some type indicating confidence in, or strength of, the peak. Associated with each peakset
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are metadata relating to the experiment from which the peakset was derived. Additionally, files
containing mapped sequencing reads (BAM//BED) can be associated with each peakset (one for
the ChIP data, and optionally another representing a control dataset).

Generally, processing data with DiffBind involves five phases:

1. Reading in peaksets: The first step is to read in a set of peaksets and associated metadata.
Peaksets are derived either from ChIP-Seq peak callers, such as MACS (Zhang et al. [2008]),
or using some other criterion (e.g. all the promoter regions in a genome). The easiest way to
read in peaksets is using a comma-separated value (csv) sample sheet with one line for each
peakset. A single experiment can have more than one associated peakset, e.g. if multiple
peak callers are used for comparison purposes, and hence have more than one line in the
sample sheet. Once the peaksets are read in, a merging function finds all overlapping peaks
and derives a single set of unique genomic intervals covering all the supplied peaks.

2. Occupancy analysis: Peaksets, especially those generated by peak callers, provide an in-
sight into the potential occupancy of the protein being ChIPed for at specific genomic loci.
After the peaksets have been loaded, it can be useful to perform some exploratory plotting
to determine how these occupancy maps agree with each other, e.g. between experimental
replicates (re-doing the ChIP under the same conditions), between different peak callers on
the same experiment, and within groups of samples representing a common experimental
condition. DiffBind provides functions to enable overlaps to be examined, as well as functions
to determine how well similar samples cluster together. Beyond quality control, the product
of an occupancy analysis may be a consensus peakset, representing an overall set of candidate
binding sites to be used in further analysis.

3. Counting reads: Once a consensus peakset has been derived, DiffBind can use the supplied
sequence read files to count how many reads overlap each interval for each unique sample.
The result of this is a binding affinity matrix containing a (normalized) read count for each
sample at every potential binding site. With this matrix, the samples can be re-clustered
using affinity, rather than occupancy, data. The binding affinity matrix is used for QC
plotting as well as for subsequent differential analysis.

4. Differential binding affinity analysis: The core functionality of DiffBind is the dif-
ferential binding affinity analysis, which enables binding sites to be identified that are sta-
tistically significantly differentially bound between sample groups. To accomplish this, first
a contrast (or contrasts) is established, dividing the samples into groups to be compared.
Next the core analysis routines are executed, by default using edgeR . This will assign a
p-value and FDR to each candidate binding site indicating the significance of their being
differentially bound.

5. Plotting and reporting: Once one or more contrasts have been run, DiffBind provides a
number of functions for reporting and plotting the results. MA plots give an overview of
the results of the analysis, while correlation heatmaps and PCA plots show how the groups
cluster based on differentially bound sites. Boxplots show the distribution of reads within
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differentially bound sites corresponding to whether they gain or lose affinity between the two
sample groups. A reporting mechanism enables differentially bound sites to be extracted for
further processing, such as annotation and/or pathway analysis.

3 Example: obtaining differentially bound sites

This section offers a quick example of how to use DiffBind to identify significantly differentially
bound sites using affinity (read count) data.

The dataset for this example consists of ChIPs against the transcription factor ERa using
five breast cancer cell lines (Ross-Innes et al. [2012]). Three of these cell lines are responsive to
tamoxifen, while two others are resistant to tamoxifen treatment. There are at least two replicates
for each of the cell lines, with one cell line having three replicates, for a total of eleven sequenced
libraries. Note that this experiment includes two types of MCF7 cells: the regular tamoxifen
responsive line as well as MCF7 cells specially treated with tamoxifen until a tamoxifen resistant
cell line is obtained. For each sample, we have one peakset originally derived using the MACS
peak caller (Zhang et al. [2008]), for a total of eleven peaksets. Note that to save space in the
package, only data for chromosome 18 is used. The metadata and peak data are available in the
extra subdirectory of the DiffBind package directory; you can make this your working directory
by entering:

> library(DiffBind)

> setwd(system.file("extra", package="DiffBind"))

Obtaining the sites significantly differentially bound (DB) between the samples that respond
to tamoxifen and those that are resistant can be done in a five-step script:

> tamoxifen = dba(sampleSheet="tamoxifen.csv")

> tamoxifen = dba.count(tamoxifen)

> tamoxifen = dba.contrast(tamoxifen, categories=DBA_CONDITION)

> tamoxifen = dba.analyze(tamoxifen)

> tamoxifen.DB = dba.report(tamoxifen)

The following subsections describe these steps in more detail.

3.1 Reading in the peaksets

Table 1 shows the sample sheet, saved in a file called tamoxifen.csv. The peaksets are read in
using the following DiffBind function:

> tamoxifen = dba(sampleSheet="tamoxifen.csv")

The result is a DBA object; the metadata associated with this object can be displayed simply
as follows:
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Table 1: Tamoxifen dataset sample sheet (tamoxifen.csv).

SampleID Tissue Factor Condition Replicate bamReads bamControl Peaks
BT474.1- BT474 ER Resistant 1 BT474 ER 1.bed.gz BT474 Input.bed.gz BT474 ER 1.bed.gz
BT474.2- BT474 ER Resistant 2 BT474 ER 2.bed.gz BT474 Input.bed.gz BT474 ER 2.bed.gz
MCF7.1+ MCF7 ER Responsive 1 MCF7 ER 1.bed.gz MCF7 Input.bed.gz MCF7 ER 1.bed.gz
MCF7.2+ MCF7 ER Responsive 2 MCF7 ER 2.bed.gz MCF7 Input.bed.gz MCF7 ER 2.bed.gz
MCF7.3+ MCF7 ER Responsive 3 MCF7 ER 3.bed.gz MCF7 Input.bed.gz MCF7 ER 3.bed.gz
T47D.1+ T47D ER Responsive 1 T47D ER 1.bed.gz T47D Input.bed.gz T47D ER 1.bed.gz
T47D.2+ T47D ER Responsive 2 T47D ER 2.bed.gz T47D Input.bed.gz T47D ER 2.bed.gz
MCF7.1- MCF7 ER Resistant 1 TAMR ER 1.bed.gz TAMR Input.bed.gz TAMR ER 1.bed.gz
MCF7.2- MCF7 ER Resistant 2 TAMR ER 2.bed.gz TAMR Input.bed.gz TAMR ER 2.bed.gz
ZR75.1+ ZR75 ER Responsive 1 ZR75 ER 1.bed.gz ZR75 Input.bed.gz ZR75 ER 1.bed.gz
ZR75.2+ ZR75 ER Responsive 2 ZR75 ER 2.bed.gz ZR75 Input.bed.gz ZR75 ER 2.bed.gz

> tamoxifen

11 Samples, 2602 sites in matrix (3557 total):

ID Tissue Factor Condition Replicate Peak.caller Intervals

1 BT474.1- BT474 ER Resistant 1 raw 1084

2 BT474.2- BT474 ER Resistant 2 raw 1115

3 MCF7.1+ MCF7 ER Responsive 1 raw 1513

4 MCF7.2+ MCF7 ER Responsive 2 raw 1037

5 MCF7.3+ MCF7 ER Responsive 3 raw 1372

6 T47D.1+ T47D ER Responsive 1 raw 509

7 T47D.2+ T47D ER Responsive 2 raw 347

8 MCF7.1- MCF7 ER Resistant 1 raw 1148

9 MCF7.2- MCF7 ER Resistant 2 raw 933

10 ZR75.1+ ZR75 ER Responsive 1 raw 2111

11 ZR75.2+ ZR75 ER Responsive 2 raw 1975

This shows how many peaks are in each peakset, as well as (in the first line) total number of
unique peaks after merging overlapping ones (3,557) and the default binding matrix of 11 samples
by the 2,602 sites that overlap in at least two of the samples. This object is available for loading
using data(tamoxifen_peaks).

Using only this peak caller data, a correlation heatmap can be generated which gives an initial
clustering of the samples using the cross-correlations of each row of the binding matrix:

> plot(tamoxifen)

The resulting plot (Figure 1) shows that while the replicates for each cell line cluster together
appropriately, the cell lines do not cluster into groups corresponding to those that are responsive
(MCF7+, T47D, and ZR75) vs. those resistant (BT474 and MCF7-) to tamoxifen treatment. It
also shows that the two most highly correlated cell lines are the two MCF7-based ones, even though
they respond differently to tamoxifen treatment.
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Figure 1: Correlation heatmap, using occupancy (peak caller score) data. Generated by:
plot(tamoxifen); can also be generated by: dba.plotHeatmap(tamoxifen).
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3.2 Counting reads

The next step is to calculate a binding matrix with scores based on read counts for every sample
(affinity scores), rather than confidence scores for only those peaks called in a specific sample
(occupancy scores). These reads are obtained using the dba.count function:1

> tamoxifen = dba.count(tamoxifen, minOverlap=3)

If you do not have the raw reads available to you, this object is available loading using
data(tamoxifen_counts). The dba.count call plots a new correlation heatmap based on the
affinity scores, seen in Figure 2a. While this shows overall higher correlation levels (evidenced by
the shift in the scale), and a slightly different clustering, responsiveness to tamoxifen treatment
does not appear to form a basis for clustering when using all of the affinity scores. (Note that the
clustering can change based on what scoring metric is used; see Section 4.4 for more details).

3.3 Establishing a contrast

Before running the differential analysis, we need to tell DiffBind which cell lines fall in which groups.
This is done using the dba.contrast function, as follows:

> tamoxifen = dba.contrast(tamoxifen, categories=DBA_CONDITION)

The uses the condition metadata (Responsive vs. Resistant) to set up a a contrast with 4
samples in the Resistant group and 7 samples in the Responsive group.2

3.4 Performing the differential analysis

The main differential analysis function is invoked as follows:

> tamoxifen = dba.analyze(tamoxifen)

This will run an edgeR analysis (see subsequent section discussing the technical details of the
edgeR analysis) on the binding affinity matrix. Displaying the resultant DBA object shows that
224 of the 1,654 sites are identified as being significantly differentially bound (DB) using the default
threshold of FDR <= 0.1:

> tamoxifen

1Note that due to space limitations the reads are not shipped with the package. See Section 8 for options to
obtains the full dataset. Alternatively, you can get the result of the dba.count call by loading the supplied R object
by invoking data(tamoxifen_counts)

2This step is actually optional: if the main analysis function dba.analyze is invoked with no contrasts established,
DiffBind will set up a default set of contrasts automatically, which will include the one we are interested in.
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(a) Correlation heatmap, using affinity (read count) data. Gener-
ated by: tamoxifen = dba.count(tamoxifen); can also be gener-
ated by: dba.plotHeatmap(tamoxifen)

(b) Correlation heatmap, using only significantly dif-
ferentially bound sites. Generated by: tamoxifen =

dba.analyze(tamoxifen); can also be generated by:
dba.plotHeatmap(tamoxifen, contrast=1)

Figure 2: Correlation heatmap plots, generated using dba.plotHeatmap.
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11 Samples, 1654 sites in matrix:

ID Tissue Factor Condition Replicate Peak.caller Intervals SN

1 BT474.1- BT474 ER Resistant 1 counts 1654 0.19

2 BT474.2- BT474 ER Resistant 2 counts 1654 0.18

3 MCF7.1+ MCF7 ER Responsive 1 counts 1654 0.35

4 MCF7.2+ MCF7 ER Responsive 2 counts 1654 0.22

5 MCF7.3+ MCF7 ER Responsive 3 counts 1654 0.28

6 T47D.1+ T47D ER Responsive 1 counts 1654 0.14

7 T47D.2+ T47D ER Responsive 2 counts 1654 0.08

8 MCF7.1- MCF7 ER Resistant 1 counts 1654 0.25

9 MCF7.2- MCF7 ER Resistant 2 counts 1654 0.16

10 ZR75.1+ ZR75 ER Responsive 1 counts 1654 0.35

11 ZR75.2+ ZR75 ER Responsive 2 counts 1654 0.24

1 Contrast:

Group1 Members1 Group2 Members2 DB.edgeR

1 Resistant 4 Responsive 7 224

By default, dba.analyze plots a correlation heatmap if it finds any significantly differentially
bound sites, shown in Figure 2b. Using only the differentially bound sites, we now see that the four
tamoxifen resistant samples (representing two cell lines) cluster together, although the tamoxifen-
responsive MCF7 replicates cluster closer to them than to the other tamoxifen responsive samples.
Comparing Figure 2a, which uses all 1,654 consensus binding sites, with Figure 2b, which uses only
the 224 differentially bound sites, demonstrates how the differential binding analysis isolates sites
that help distinguish between the Resistant and Responsive sample groups.

3.5 Retrieving the differentially bound sites

The final step is to retrieve the differentially bound sites as follows:

> tamoxifen.DB = dba.report(tamoxifen)

These are returned as a GRanges object, appropriate for downstream processing:

> tamoxifen.DB

GRanges with 224 ranges and 6 metadata columns:

seqnames ranges strand | Conc

<Rle> <IRanges> <Rle> | <numeric>

1433 chr18 [62640747, 62642453] * | 6.93430344179521

7 chr18 [ 384853, 386517] * | 6.82514806459552

156 chr18 [ 7635601, 7636863] * | 6.22190948600179

1606 chr18 [72497301, 72498984] * | 7.85563252157062
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1238 chr18 [53719311, 53721628] * | 6.49658806591044

... ... ... ... ... ...

206 chr18 [ 9355994, 9356762] * | 4.23437110399189

857 chr18 [37499916, 37501228] * | 6.21880505394029

288 chr18 [11137133, 11137886] * | 3.97350619978881

986 chr18 [42005122, 42005768] * | 3.44915556151984

515 chr18 [19529117, 19529853] * | 4.40311638184741

Conc_Resistant Conc_Responsive Fold p.value

<numeric> <numeric> <numeric> <numeric>

1433 2.81775662440764 7.55581472986463 -4.73805810545699 5.84187592839377e-08

7 8.09673253332829 4.44318491699971 3.65354761632857 9.77023605393716e-08

156 7.39212878690454 4.41322947293372 2.97889931397082 2.45405216928035e-07

1606 4.25292499017943 8.46386612934426 -4.21094113916483 6.86350488057271e-07

1238 3.77414036666382 7.0669027221338 -3.29276235546998 1.52171226937075e-06

... ... ... ... ...

206 2.72718725305519 4.68896980918502 -1.96178255612983 0.012153036140412

857 7.18267500046982 5.08855676430263 2.09411823616719 0.0130295577925254

288 1.55290337086532 4.52410965991814 -2.97120628905282 0.0130479195217576

986 1.50409455267081 3.95811799245943 -2.45402343978862 0.0131053958465986

515 5.20260808287049 3.60941980639329 1.59318827647721 0.0132153352117689

FDR

<numeric>

1433 8.07998521660603e-05

7 8.07998521660603e-05

156 0.000135300076266323

1606 0.000283805926811682

1238 0.000462663188326275

... ...

206 0.0913687353465518

857 0.0972032499115432

288 0.0972032499115432

986 0.0972032499115432

515 0.0975810912511865

---

seqlengths:

chr18

NA

The value columns show the mean read concentration over all the samples (the default calcula-
tion uses log2 normalized ChIP read counts with control read counts subtracted) and the mean con-
centration over the first (Resistant) group and second (Responsive) group. The Fold column shows
the difference in mean concentrations between the two groups (Conc Resistant - Conc Responsive),
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with a positive value indicating increased binding affinity in the Resistant group and a negative
value indicating increased binding affinity in the Responsive group. The final two columns give
confidence measures for identifying these sites as differentially bound, with a raw p-value and a
multiple testing corrected FDR in the final column.

4 Example: plotting

Besides the correlation heatmaps automatically generated by the core functions, a number of other
plots are available using the affinity data. This sections covers Venn diagrams, MA plots, PCA
plots, Boxplots, and Heatmaps.

4.1 Venn diagrams

Venn diagrams are useful for examining overlaps between peaksets, particularly when determining
how best to derive consensus peaksets for further analysis. Section 6.2, which discusses consensus
peaksets, shows a number of Venn plots in context, and the help page for dba.plotVenn has a
number of additional examples.

4.2 MA plots

MA plots are a useful way to visualize the effect of normalization on data, as well as seeing which
of the datapoints are being identified as differentially bound. An MA plot can be obtained for the
resistant-responsive contrast as follows:

> dba.plotMA(tamoxifen)

The plot is shown in Figure 3. Each point represents a binding site, with point in red repre-
senting sites identified as differentially bound. The plot shows how the differentially bound sites
have an absolute log fold difference of at least 2. This same data can also be shown with the con-
centrations of each sample groups plotted against each other plot using dba.plotMA(tamoxifen,

bXY=T).

4.3 PCA plots

While the correlation heatmaps already seen are good for showing clustering, plots based on prin-
cipal components analysis can be used to give a deeper insight into how samples are associated. A
PCA plot corresponding to Figure 2a, which includes normalized read counts for all the binding
sites, can be obtained as follows:

> dba.plotPCA(tamoxifen,DBA_CONDITION)
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Figure 3: MA plot of Resistant-Responsive contrast, with sites identified as significantly differen-
tially bound shown in red. Generated by: dba.plotMA(tamoxifen)

Legend

Resistant "black"

Responsive "red"

This draws the plot and returns a color legend. The resulting plot (Figure 4a) shows the
four Resistant samples (black) not separable from the Responsive samples (red) in either the first
(horizontal) or the second (vertical) components when looking at all the binding sites.

A PCA plot using only the differentially bound sites (corresponding to Figure 2b), using an
FDR threshold of 0.05, can be drawn as follows:

> dba.plotPCA(tamoxifen, contrast=1,th=.05)

Legend

Resistant "black"

Responsive "red"

This plot (Figure 4b) shows that the differential analysis identifies sites than can be used to
separate the sample groups along both the first and second components.

The dba.plotPCA function is customizable. For example, if you want to see where each of the
unique cell lines lies, type dba.plotPCA(tamoxifen, attributes=c(DBA_TISSUE,DBA_CONDITION).
If your installation of R supports 3D graphics using the rgl package, try dba.plotPCA(tamoxifen,

b3D=T). Seeing the first three principal components can be a useful exploratory exercise.
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(a) PCA plot using affinity data for all sites.
Generated by: dba.plotPCA(tamoxifen)

(b) PCA plot using affinity data for only
differentially bound sites. Generated by:
dba.plotPCA(tamoxifen, contrast=1)

Figure 4: Principal Component Analysis (PCA) plots, generated using dba.plotPCA.

4.4 Boxplots

Boxplots provide a way to view how read distributions differ between classes of binding sites.
Consider the example, where the 224 differentially bound sites are identified. The MA plot (Figure
3) shows that these are not distributed evenly between those that increase binding affinity in the
Responsive group vs. those that increase binding affinity in the Resistant groups. This can be seen
quantitatively using the sites returned in the report:

> sum(tamoxifen.DB$Fold<0)

[1] 146

> sum(tamoxifen.DB$Fold>0)

[1] 78

But how are reads distributed amongst the different classes of differentially bound sites and
sample groups? These data can be more clearly seen using a boxplot:

> pvals = dba.plotBox(tamoxifen)

The default plot (Figure 5) shows in the first two boxes that amongst differentially bound sites
overall, the Responsive samples have a somewhat higher mean read concentration. The next two

13



Figure 5: Box plots of read distributions for significantly differentially bound (DB) sites. Tamoxifen
resistant samples are shown in red, and responsive samples are shown in blue. Left two boxes show
distribution of reads over all DB sites in the Resistant and Responsive groups; middle two boxes
show distributions of reads in DB sites that increase in affinity in the Responsive group; last two
boxes show distributions of reads in DB sites that increase in affinity in the Resistant group.
Generated by: dba.plotBox(tamoxifen)
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boxes show the distribution of reads in differentially bound sites that exhibit increased affinity in
the Responsive samples, while the final two boxes show the distribution of reads in differentially
bound sites that exhibit increased affinity in the Resistant samples.

dba.plotBox returns a matrix of p-values (computed using a two-sided Wilcoxon ‘Mann-
Whitney’ test, paired where appropriate) indicating which of these distributions are significantly
different from another distribution.

> pvals

Resistant.DB Responsive.DB Resistant.DB+ Responsive.DB+

Resistant.DB 1.000000e+00 8.011987e-13 1.346725e-07 1.641060e-14

Responsive.DB 8.011987e-13 1.000000e+00 1.195136e-35 2.499953e-04

Resistant.DB+ 1.346725e-07 1.195136e-35 1.000000e+00 1.055207e-25

Responsive.DB+ 1.641060e-14 2.499953e-04 1.055207e-25 1.000000e+00

Resistant.DB- 1.442219e-15 3.577950e-10 1.804347e-30 2.669635e-04

Responsive.DB- 3.303821e-01 2.951815e-08 1.303960e-11 1.596180e-15

Resistant.DB- Responsive.DB-

Resistant.DB 1.442219e-15 3.303821e-01

Responsive.DB 3.577950e-10 2.951815e-08

Resistant.DB+ 1.804347e-30 1.303960e-11

Responsive.DB+ 2.669635e-04 1.596180e-15

Resistant.DB- 1.000000e+00 1.715161e-14

Responsive.DB- 1.715161e-14 1.000000e+00

The significance of the overall difference in distribution of concentrations amongst the differ-
entially bound sites in the two groups is shown to be p-value=8.011987e-13, while those between
the Resistant and Responsive groups in the individual cases (increased in Responsive or Resistant)
have p-values computed as 1.055207e-25 and 1.715161e-14.

4.5 Heatmaps

DiffBind provides two types of heatmaps. This first, correlation heatmaps, we have already seen.
For example, the heatmap shown in Figure 2a can be generated as follows:

> corvals = dba.plotHeatmap(tamoxifen)

The effect of different scoring methods (normalization) can be examined in these plots by setting
the score parameter to a different value. The default value, DBA_SCORE_TMM_MINUS_EFFECTIVE,
uses the TMM normalization procedure from edgeR , with control reads subtracted first and
using the effective library size (reads in peaks). Another scoring method is to use RPKM fold
(RPKM of the ChIP reads divided by RPKM of the control reads; a correlation heatmap for
all the data using this scoring method can be obtained by typing dba.plotHeatmap(tamoxifen,

score=DBA_SCORE_RPKM_FOLD).
Another way to view the patterns of binding affinity directly in the differentially bound sites

is via a binding affinity heatmap. This can be plotted for the example case as follows:
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Figure 6: Binding affinity heatmap showing affinities for differentially bound sites. Samples cluster
first by whether they are responsive to tamoxifen treatment, then by cell line. Clusters of bind-
ing sites show distinct patterns of affinity levels. Generated by: dba.plotHeatmap(tamoxifen,

contrast=1, correlations=FALSE)

> corvals = dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE)

Figure 6 shows the affinities and clustering of the differentially bound sites (rows), as well as the
sample clustering (columns). This plot can be tweaked to get more contrast, for example by using
row-scaling dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE, scale=row).

5 Example: differential binding analysis using a blocking

factor

The previous example showed how to perform a differential binding analysis using a single factor
with two values; that is, finding the significantly differentially bound sites between two sets of
samples. This section extends the example by including a second factor, potentially with multiple
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values, that represents a confounding condition. Examples of experiments where it is appropriate
to use a blocking factor include ones where there are potential batch effects, with samples from
the two conditions prepared together, or a matched design (e.g. matched normal and tumor pairs,
where the primary factor of interest is to discover sites consistently differentially bound between
normal and tumor samples. In the current example, the confounding effect we want to control for
is the presence of two sets of samples, one tamoxifen responsive and one resistant, that are both
derived from the same MCF7 cell line.

In the previous analysis, the two MCF7-derived cell lines tended to cluster together. While the
differential binding analysis was able to identify sites that could be used to separate the resistance
from the responsive samples, the confounding effect of the common ancestry could still be seen
even when considering only the significantly differentially bound sites (Figure 2a).

Using the generalized linear modelling (GLM) functionality included in edgeR and DESeq ,
the confounding factor can be explicitly modelled. This is done by specifying a blocking factor to
dba.contrast. There are a number of ways to specify this factor. If it is encapsulated in a piece of
metadata (eg. DBA REPLICATE, or DBA TREATMENT etc.), simply specifying the metadata
field is sufficient. In the current case, there is no specific metadata field that captures the factor
we want to block (although an unused metadata field, such as DBA TREATMENT, could be used
to specify this factor). An alternate way of specifying the confounded sampled is to use a mask:

> data(tamoxifen_counts)

> tamoxifen = dba.contrast(tamoxifen,categories=DBA_CONDITION,

+ block=tamoxifen$masks$MCF7)

Now when the analysis is run, it will be run using both the single-factor comparison as well as
fitting a linear model with the second, blocking factor, for comparison:

> tamoxifen = dba.analyze(tamoxifen)

> tamoxifen

11 Samples, 1654 sites in matrix:

ID Tissue Factor Condition Replicate Peak.caller Intervals SN

1 BT474.1- BT474 ER Resistant 1 counts 1654 0.19

2 BT474.2- BT474 ER Resistant 2 counts 1654 0.18

3 MCF7.1+ MCF7 ER Responsive 1 counts 1654 0.35

4 MCF7.2+ MCF7 ER Responsive 2 counts 1654 0.22

5 MCF7.3+ MCF7 ER Responsive 3 counts 1654 0.28

6 T47D.1+ T47D ER Responsive 1 counts 1654 0.14

7 T47D.2+ T47D ER Responsive 2 counts 1654 0.08

8 MCF7.1- MCF7 ER Resistant 1 counts 1654 0.25

9 MCF7.2- MCF7 ER Resistant 2 counts 1654 0.16

10 ZR75.1+ ZR75 ER Responsive 1 counts 1654 0.35

11 ZR75.2+ ZR75 ER Responsive 2 counts 1654 0.24
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Figure 7: MA plot of Resistant-Responsive contrast, using MCF7 origin as a blocking fac-
tor, with sites identified as significantly differentially bound shown in red. Generated by:
dba.plotMA(tamoxifen, method=DBA_EDGER_BLOCK)

1 Contrast:

Group1 Members1 Group2 Members2 Block1Val InBlock1 Block2Val InBlock2

1 Resistant 4 Responsive 7 true 5 false 6

DB.edgeR DB.edgeR.block

1 224 431

This indicates that where the standard, single-factor edgeR analysis identifies 224 differentially
bound sites, the analysis using the blocking factor finds 431 such sites. An MA plot shows how
the analysis has changed:

> dba.plotMA(tamoxifen,method=DBA_EDGER_BLOCK)

The resulting plot is shown in Figure 7. Comparing this to Figure 3, at least two differences can
be observed. The analysis has become more sensitive, with sites being identified as significantly
differentially bound with lower magnitude fold changes (as low as twofold, as this plot is on a log2
scale). But it is not merely lowering a fold threshold: some sites with higher fold changes are no
longer found to be significant. These were identified as significantly differentially bound in the
earlier analysis because the confounding factor was not being modelled.

Consider the resulting separation and clustering using the newly discovered differentially bound
sites:
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> dba.plotHeatmap(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK,

+ attributes=c(DBA_TISSUE,DBA_CONDITION,DBA_REPLICATE))

> dba.plotPCA(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK,

+ attributes=c(DBA_TISSUE,DBA_CONDITION))

Legend

BT474:Resistant "black"

MCF7:Resistant "red"

MCF7:Responsive "dodgerblue"

T47D:Responsive "darkgreen"

ZR75:Responsive "cyan"

Frequently, as more sites are included in these plots, the result is often worse clustering/separation
along the grouping of primary interest. As the correlations used for the heatmap and the count
scores used for the PCA plots do not take the blocking factor into account, the separation seen
in these plots will not necessarily sharpen after completing a successful block analysis. Compare
the resulting correlation heatmap (Figure 8 to Figure 2b). The PCA plot (Figure 9, compared to
Figure 4b), shows less distance between the two sample groups along the first component, as more
binding sites common tot he two MCF7 cell lines are able to be identified as being significantly
differentially bound between the Resistant and Responsive sample groups.

It is also interesting to compare the performance of edgeR with that of DESeq on this dataset:

> tamoxifen = dba.analyze(tamoxifen,method=DBA_DESEQ)

.

.

.

.

> tamoxifen

11 Samples, 1654 sites in matrix:

ID Tissue Factor Condition Replicate Peak.caller Intervals SN

1 BT474.1- BT474 ER Resistant 1 counts 1654 0.19

2 BT474.2- BT474 ER Resistant 2 counts 1654 0.18

3 MCF7.1+ MCF7 ER Responsive 1 counts 1654 0.35

4 MCF7.2+ MCF7 ER Responsive 2 counts 1654 0.22

5 MCF7.3+ MCF7 ER Responsive 3 counts 1654 0.28

6 T47D.1+ T47D ER Responsive 1 counts 1654 0.14

7 T47D.2+ T47D ER Responsive 2 counts 1654 0.08

8 MCF7.1- MCF7 ER Resistant 1 counts 1654 0.25

9 MCF7.2- MCF7 ER Resistant 2 counts 1654 0.16
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Figure 8: Correlation heatmap of using scores for significantly differentially bound
sites for the Resistant-Responsive contrast, using MCF7 origin as a blocking factor.
Generated by: dba.plotHeatmap(tamoxifen, contrast=1, method=DBA_EDGER_BLOCK, at-

tributes=c(DBA_TISSUE,DBA_CONDITION,DBA_REPLICATE))
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Figure 9: Plot of first two principal components, using scores for significantly dif-
ferentially bound sites for the Resistant-Responsive contrast, using MCF7 origin as
a blocking factor. Resistant samples in black and red; MCF7 samples in red
and blue.Generated by: dba.plotPCA(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK, at-

tributes=c(DBA_TISSUE,DBA_CONDITION))
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10 ZR75.1+ ZR75 ER Responsive 1 counts 1654 0.35

11 ZR75.2+ ZR75 ER Responsive 2 counts 1654 0.24

1 Contrast:

Group1 Members1 Group2 Members2 Block1Val InBlock1 Block2Val InBlock2

1 Resistant 4 Responsive 7 true 5 false 6

DB.edgeR DB.edgeR.block DB.DESeq DB.DESeq.block

1 224 431 54 550

While DESeq has a much more conservative approach to the single factor analysis, identifying
only 54 sites as differentially bound, when modelling the confounding factor, the greater sensitivity
results in many more sites being identified. You can check this by looking at the identified sites
using dba.report, and performing MA, heatmap, and PCA plots.

6 Example: occupancy analysis and overlaps

In this section, we look at the tamoxifen resistance ER-binding dataset in some more detail, showing
what a pure occupancy-based analysis would look like, and comparing it to the results obtained
using the affinity data. For this we will start by re-loading the peaksets:

> data(tamoxifen_peaks)

6.1 Overlap rates

One reason to do an occupancy-based analysis is to determine what candidate sites should be used
in a subsequent affinity-based analysis. In the example so far, we took all sites that were identified
in peaks in at least three of the eleven peaksets, reducing the number of sites from 3,557 overall
to the 1,654 sites used in the differential analysis. We could have used a more stringent criterion,
such as only taking sites identified in five or six of the peaksets, or a less stringent one, such as
including all 3,557 sites. In making the decision of what criteria to use many factors come into
play, but it helps to get an idea of the rates at which the peaksets overlap (for more details on
how overlaps are determined, see Section 7.2 on peak merging). A global overview can be obtained
using the RATE mode of the dba.overlap function as follows:

> olap.rate = dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)

> olap.rate

[1] 3557 2602 1654 1299 1002 764 620 455 352 187 118

olap.rate is a vector containing the number of peaks that appear in at least one, two, three, and
so on up to all eleven peaksets.

These values can be plotted to show the overlap rate drop-off curve:
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Figure 10: Overlap rate plot, showing how the number of overlapping peaks decreases as the
overlap criteria becomes more stringent. X axis shows the number of peaksets in which the site
is identified, while the Y axis shows the number of overlapping sites. Generated by plotting the
result of: dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)

> plot(olap.rate,type='b',ylab='# peaks', xlab='Overlap at least this many peaksets')

The rate plot is shows in Figure 10. These curves typically exhibit a roughly geometric drop-off,
with the number of overlapping sites halving as the overlap criterion become stricter by one site.
When the drop-off is extremely steep, this is an indication that the peaksets do not agree very
well. For example, if there are replicates you expect to agree, there may be a problem with the
experiment. In the current example, peak agreement is high and the curve exhibits a better than
geometric drop-off.

6.2 Deriving consensus peaksets

When performing an overlap analysis, it is often the case that the overlap criteria are set stringently
in order to lower noise and drive down false positives.3 The presence of a peak in multiple peaksets

3It is less clear that limiting the potential binding sites in this way is appropriate when focusing on affinity data,
as the differential binding analysis method will identify only sites that are significantly differentially bound, even if
operating on peaksets that include incorrectly identified sites.
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is an indication that it is a ”real” binding site, in the sense of being identifiable in a repeatable
manner. The use of biological replicates (performing the ChIP multiple times), as in the tamoxifen
dataset, can be used to guide derivation of a consensus peakset. Alternatively, an inexpensive but
less powerful way to help accomplish this is to use multiple peak callers for each ChIP dataset and
look for agreement between peak callers (Li et al. [2011]).

Consider for example the standard (tamoxifen responsive) MCF7 cell line, represented by three
replicates in this dataset. How well do the replicates agree on their peak calls? The overlap
rate for just the MCF7 samples can be isolated using a sample mask. A set of sample masks are
automatically associated with a DBA object in the $masks field:

> names(tamoxifen$masks)

[1] "BT474" "MCF7" "T47D" "ZR75" "ER"

[6] "Resistant" "Responsive" "" "raw" "Replicate.1"

[11] "Replicate.2" "Replicate.3" "All" "None"

Arbitrary masks can be generated using the dba.mask function, or simply by specifying a
vector of peakset numbers. In this case, a mask that isolates the MCF7 samples can be generated
by combining to pre-defined masks (MCF7 and Responsive) and passed into the dba.overlap

function:

> dba.overlap(tamoxifen,tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive,

+ mode=DBA_OLAP_RATE)

[1] 1767 1222 874

There are 874 peaks (out of 1,767) identified in all three replicates. A finer grained view of the
overlaps can be obtained with the dba.plotVenn function:

> dba.plotVenn(tamoxifen, tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive)

The resultant plot is shown as Figure 11. This plot shows the 874 consensus peaks identified
as common to all replicates, but further breaks down how the replicates relate to each other. The
same can be done for each of the replicated cell line experiments, and rather than applying a
global cutoff (3 of 11), each cell line could be dealt with individually in deriving a final peakset.
A separate consensus peakset for each of the replicated sample types can be added to the DBA
object using dba.peakset:

> tamoxifen = dba.peakset(tamoxifen, consensus = c(DBA_TISSUE,DBA_CONDITION),

+ minOverlap=0.66)

> tamoxifen
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Figure 11: Venn diagram showing how the ER peak calls for three replicates of responsive MCF7 cell
line overlap. Generated by plotting the result of: dba.venn(tamoxifen,tamoxifen$masks$MCF7

& tamoxifen$masks$Responsive)
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16 Samples, 2602 sites in matrix (3557 total):

ID Tissue Factor Condition Replicate Peak.caller Intervals

1 BT474.1- BT474 ER Resistant 1 raw 1084

2 BT474.2- BT474 ER Resistant 2 raw 1115

3 MCF7.1+ MCF7 ER Responsive 1 raw 1513

4 MCF7.2+ MCF7 ER Responsive 2 raw 1037

5 MCF7.3+ MCF7 ER Responsive 3 raw 1372

6 T47D.1+ T47D ER Responsive 1 raw 509

7 T47D.2+ T47D ER Responsive 2 raw 347

8 MCF7.1- MCF7 ER Resistant 1 raw 1148

9 MCF7.2- MCF7 ER Resistant 2 raw 933

10 ZR75.1+ ZR75 ER Responsive 1 raw 2111

11 ZR75.2+ ZR75 ER Responsive 2 raw 1975

12 BT474:Resistant BT474 ER Resistant 1-2 raw 902

13 MCF7:Responsive MCF7 ER Responsive 1-2-3 raw 1222

14 T47D:Responsive T47D ER Responsive 1-2 raw 298

15 MCF7:Resistant MCF7 ER Resistant 1-2 raw 795

16 ZR75:Responsive ZR75 ER Responsive 1-2 raw 1633

This adds a new consensus peakset for each set of samples that share the same Tissue and Condi-
tion values. The exact effect could be obtained by calling tamoxifen = dba.peakset(tamoxifen,

consensus = -DBA_REPLICATE) on the original set of peaks; this tells DiffBind to generate a con-
sensus peakset for every set of samples that have identical metadata values except the Replicate
number.

From this, a new DBA object can be generated consisting of only the five consensus peaksets
(the $Consensus mask filters peaksets previously formed using dba.peakset) :

> tamoxifen_consensus = dba(tamoxifen, mask = tamoxifen$masks$Consensus)

> tamoxifen_consensus

5 Samples, 1163 sites in matrix (2444 total):

ID Tissue Factor Condition Replicate Peak.caller Intervals

1 BT474:Resistant BT474 ER Resistant 1-2 raw 902

2 MCF7:Responsive MCF7 ER Responsive 1-2-3 raw 1222

3 T47D:Responsive T47D ER Responsive 1-2 raw 298

4 MCF7:Resistant MCF7 ER Resistant 1-2 raw 795

5 ZR75:Responsive ZR75 ER Responsive 1-2 raw 1633

Alternatively, a master consensus peakset could be generated, and reads counted, directly using
dba.count: tamoxifen = dba.count(tamoxifen, peaks=tamoxifen$masks$Consensus)

Finally, consider an analysis where we wished to treat all five MCF7 samples together to look
for binding sites specific to that cell line irrespective of tamoxifien resistant/responsive status.
We can create consensus peaksets for each cell type, and look at how the resultant peaks overlap
(Figure 12):
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Figure 12: Venn diagram showing how the consensus peaks for each cell type overlap. Generated
by plotting the result of: dba.venn(tamoxifen,tamoxifen$masks$Consensus)
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> data(tamoxifen_peaks)

> tamoxifen = dba.peakset(tamoxifen, consensus = DBA_TISSUE, minOverlap=0.66)

> dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)

6.3 A complete occupancy analysis: identifying sites unique to a sam-
ple group

Occupancy-based analysis, in addition to offering many ways of deriving consensus peaksets, can
also be used to identify sites unique to a group of samples. This is analogous to, but not the
same as, finding differentially bound sites. In these subsections, the two approaches are directly
compared.

Returning to the original tamoxifen dataset:

> data(tamoxifen_peaks)

We can derive consensus peaksets for the Resistant and Responsive groups. First we examine
the overlap rates:

> dba.overlap(tamoxifen,tamoxifen$masks$Resistant,mode=DBA_OLAP_RATE)

[1] 1875 1298 597 436

> dba.overlap(tamoxifen,tamoxifen$masks$Responsive,mode=DBA_OLAP_RATE)

[1] 3208 2293 1217 807 584 265 161

Requiring that consensus peaks overlap in at least one third of the samples in each group results
in 1,298 sites for the Resistant group and 1,217 sites for the Responsive group:

> tamoxifen = dba.peakset(tamoxifen, consensus = DBA_CONDITION, minOverlap = 0.33)

> dba.plotVenn(tamoxifen,tamoxifen$masks$Consensus)

Figure 13 shows that 448 sites are unique to the Resistant group, and 392 sites are unique to
the Responsive group, with 819 sites being identified in both groups (meaning in at least half the
Resistant samples and at least three of the seven Responsive samples). If our primary interest is in
finding binding sites that are different between the two groups, it may seem reasonable to consider
the 819 common sites to be uninteresting, and focus on the 840 sites that are unique to a specific
group. These unique sites can be obtained using dba.overlap:

> tamoxifen.OL = dba.overlap(tamoxifen, tamoxifen$masks$Consensus)

The sites unique to the Resistant group are accessible in tamoxifen.OL$onlyA, with the
Responsive-unique sites in tamoxifen.OL$onlyB:
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Figure 13: Venn diagram showing how the ER peak calls for two response groups overlap. Gener-
ated by plotting the result of: dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)

> tamoxifen.OL$onlyA

GRanges with 448 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

4 chr18 [301531, 302172] * | 0.128978267622691

6 chr18 [346557, 347362] * | 0.0254536579689849

7 chr18 [361121, 362106] * | 0.0178065034135036

8 chr18 [384853, 386517] * | 0.0887190625790319

11 chr18 [479200, 480032] * | 0.086873645309346

... ... ... ... ... ...

1649 chr18 [75157775, 75158504] * | 0.0346388152202919

1650 chr18 [75163026, 75163816] * | 0.0306614720699587

1652 chr18 [75401417, 75402162] * | 0.0494002153710507

1653 chr18 [75525519, 75526188] * | 0.064589591798652

1657 chr18 [75826088, 75826939] * | 0.0252808318204148

---

seqlengths:

chr18

NA

> tamoxifen.OL$onlyB

GRanges with 392 ranges and 1 metadata column:

seqnames ranges strand | score
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<Rle> <IRanges> <Rle> | <numeric>

5 chr18 [ 336592, 337347] * | 0.0466440809907735

10 chr18 [ 439109, 440079] * | 0.0331046835979069

27 chr18 [ 988767, 989698] * | 0.047010413661554

28 chr18 [1065304, 1066051] * | 0.0695151519760949

33 chr18 [1231653, 1232311] * | 0.0552311386757906

... ... ... ... ... ...

1645 chr18 [74850775, 74851581] * | 0.0736038759005841

1646 chr18 [74860617, 74861878] * | 0.056640563146553

1647 chr18 [74906349, 74907306] * | 0.0356814694433001

1655 chr18 [75641971, 75642647] * | 0.061984513945994

1659 chr18 [76087923, 76089259] * | 0.125980115522818

---

seqlengths:

chr18

NA

The scores associated with each site are derived from the peak caller confidence score, and are
a measure of confidence in the peak call (occupancy), not a measure of how strong or distinct the
peak is.

6.4 Comparison of occupancy and affinity based analyses

So how does this occupancy-based analysis compare to the previous affinity-based analysis?
First, different criteria were used to select the overall consensus peakset. We can compare them

to see how well they agree:

> tamoxifen = dba.peakset(tamoxifen,tamoxifen$masks$Consensus,

+ minOverlap=1,sampID="OL Consensus")

> tamoxifen = dba.peakset(tamoxifen,!tamoxifen$masks$Consensus,

+ minOverlap=3,sampID="Consensus_3")

> dba.plotVenn(tamoxifen,14:15)

Figure 14 shows that the two sets agree on about 85% of their sites, so the results should be
directly comparable between the differing parameters used to establish the consensus peaksets.4

Next re-load the affinity analysis:

> data(tamoxifen_analysis)

To compare the sites unique to each sample group identified from the occupancy analysis with
those sites identified as differentially bound based on affinity (read count) data, we use a feature

4Alternatively, we could re-run the analysis using the newly derived consensus peakset by passing it into the
counting function: > tamoxifen = dba.count(tamoxifen, peaks = tamoxifen$masks$Consensus)

30



Figure 14: Venn diagram showing how the ER peak calls for two different ways of deriving consensus
peaksets. Generated by plotting the result of: dba.plotVenn(tamoxifen,14:15)

of dba.report that facilitates evaluating the occupancy status of sites. Here we obtain a report
of all the sites (th=1) with occupancy statistics (bCalled=T):

> tamoxifen.rep = dba.report(tamoxifen,bCalled=T,th=1)

The bCalled option adds two columns to the report (Called1 and Called2), one for each
group, giving the number of samples within the group in which the site was identified as a peak
in the original peaksets generated by the peak caller. We can use these to recreate the overlap
criteria used in the occupancy analysis:

> onlyResistant = tamoxifen.rep$Called1>=2 & tamoxifen.rep$Called2<3

> sum(onlyResistant )

[1] 313

> onlyResponsive = tamoxifen.rep$Called2>=3 & tamoxifen.rep$Called1<2

> sum(onlyResponsive)

[1] 391

> bothGroups = tamoxifen.rep$Called1>= 2 & tamoxifen.rep$Called2>=3

> sum(bothGroups)

[1] 821
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Comparing these numbers verifies the similarity with those seen in Figure 13, showing again
how the basic analysis is not oversensitive to differences in how the consensus peaksets are formed.
This overlap analysis suggests that 704 of the sites are uniquely bound in either the Responsive or
Resistant groups, while 821 sites are common to both.

Completing a full differential analysis and focusing on only those sites identified as significantly
differentially bound (FDR <= 0.1), however, shows a different story than that obtainable using
only occupancy data:

> tamoxifen.DB = dba.report(tamoxifen,bCalled=T,th=.1)

> onlyResistant = tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2<3

> sum(onlyResistant)

[1] 39

> onlyResponsive = tamoxifen.DB$Called2>=3 & tamoxifen.DB$Called1<2

> sum(onlyResponsive)

[1] 114

> bothGroups = tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2>=3

> sum(bothGroups)

[1] 69

There are a number of notable differences in the results. First there are many fewer sites
identified as differentially bound (39+114+69 = 222) than are unique to one condition (313+391
= 704). Indeed, most of the sites identified in the occupancy analysis as unique to a sample
group are not found to be significantly differentially bound using the affinity data. While partly
this is a result of the stringency of the statistical tests, it shows how the affinity analysis can
discriminate between sites where peak callers are making occupancy decisions that do not reflect
significant differences in read densities at these sites. Note that only about 22% of sites unique
to one condition are identifiable as significantly differentially bound (39+114 = 153 out of 704).
Secondly, differentially bound sites are as likely to be called in the consensus of both response groups
as they are to be unique to one group, as nearly one third of the sites identified as significantly
differentially bound are called as peaks in both response groups. Indeed, sites identified in both
sample groups are almost as likely to be identified as significantly differentially bound (8%, or 69
out of 821) as sites identified only in the Resistant sample group (12%, or 39 out of 313). The
final advantage of a quantitative analysis is that the differentially bound peaks identified using
the affinity analysis are associated with significance statistics (p-value and FDR) that can be used
to rank them for further examination, while the occupancy analysis yields a relatively unordered
list of peaks, as the peak caller statistics refer only to the significance of occupancy, and not of
differential binding.
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7 Technical notes

This section includes some technical notes explaining some of the technical details of DiffBind pro-
cessing.

7.1 Loading peaksets

There are a number of ways to get peaksets loaded into a DBA object. Peaksets can be read in
from files or loaded from interval sets already stored in an R object. Samples can be specified
either in a sample sheet (using dba) or loaded one at a time (using dba.peakset).

When loading in peaksets from files, specifying what peak caller generated the file enables
peaks from supported peak callers to be read in. See the help page for dba.peakset for a list of
supported peak callers. Any string to indicate the peak caller; if it is not one of the supported
callers, a default ”raw” format is assumed, consisting of a text file with three or four columns
(indicating the chromosome, start position, and end position, with a score for each interval found
in the fourth column, if present). You can further control how peaks are read using the PeakFormat,
ScoreCol, and bLowerBetter fields if you want to override the defaults for the specified peak caller
identifier. For example, with the tamoxifen dataset used in this tutorial, the peaks were called
using the MACS peak caller, but the data are supplied as simple text files, no the expected MACS
”xls” format. To maintain the peak caller in the metadata, we could specify the PeakCaller as
”macs”but the PeakFormat as ”raw”. If we wanted to use peak scores in a different column than the
fourth, the scorecol parameter could be set to indicate the appropriate column number. When
handling scoring, DiffBind by default assumes that a higher score indicates a ”better” peak. If this
is not the case, for example if the score is a p-value or FDR, we could set bLowerScoreBetter to
TRUE.

When using a sample sheet, values for fields missing in the sample sheet can be supplied when
calling dba. In addition to the minimal sample sheet used for the tutorial, an equivalent sample
sheet with all the metadata fields is included, called ”tamoxifen allfields.csv”. See the help page
for dba for an example using this sample sheet.

7.2 Merging peaks

When forming the global binding matrix consensus peaksets, DiffBind first identifies all unique
peaks amongst the relevant peaksets. As part of this process, it merges overlapping peaks, replacing
them with a single peak representing the narrowest region that covers all peaks that overlap by at
least one base. There are at least two consequences of this that are worth noting.

First, as more peaksets are included in analysis, the average peak width tends to become longer
as more overlapping peaks are detected and the start/end points are adjusted outward to account
for them. Secondly, peak counts may not appear to add up as you may expect due to merging.
For example, if one peakset contains two small peaks near to each other, while a second peakset
includes a single peak that overlaps both of these by at least one base, these will all be replaced in
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the merged matrix with a single peak. As more peaksets are added, multiple peaks from multiple
peaksets may be merged together to form a single, wider peak.

7.3 edgeR analysis

When dba.analyze is invoked using the default method=DBA_EDGER, a standardized differential
analysis is performed using the edgeR package (Robinson et al. [2010]). This section details the
precise steps in that analysis.

For each contrast, a separate analysis is performed. First, a matrix of counts is constructed
for the contrast, with columns for all the samples in the first group, followed by columns for all
the samples in the second group. The raw read count is used for this matrix; if the bSubControl

parameter is set to TRUE (as it is by default), the raw number of reads in the control sample
(if available) will be subtracted (with a minimum final read count of 1). Next the library size is
computed for each sample for use in subsequent normalization. By default, this is the total number
of reads in peaks (the sum of each column). Alternatively, if the bFullLibrarySize parameter is
set to TRUE, the total number of reads in the library (calculated from the source BAM//BED file)
is used. The default setting is appropriate for situations when the overall signal is expected to be
directly comparable between the samples; using the full library size may be preferable if samples are
expected to have dramatically different signals (e.g., if some are expected to have very low binding
rates compared to others). Next comes a call to edgeR ’s DGEList function. The DGEList object
that results is next passed to calcNormFactors with all other parameters retained as defaults
(method="TMM"), returning an updated DGEList object. This is passed to estimateCommonDisp

with default parameters.
If the method is DBA_EDGER_CLASSIC, then if bTagwise is TRUE (most useful when there are

at least three members in each group of a contrast), the resulting DGEList object is then passed
to estimateTagwiseDisp, with the prior set to 50 divided by two less than the total number of
samples in the contrast, and trend="none". The final steps are to perform testing to determine the
significance measure of the differences between the sample groups by calling exactTest (Robinson
and Smyth [2007]) using the DGEList with the dispersion set based on the bTagwise parameter.

If the method is DBA_EDGER_GLM (the default), then a a design matrix is generated with two
coefficients (the Intercept and one of the groups). Next estimateGLMCommonDisp is called; if
bTagwise=TRUE, estimateGLMTagwiseDisp is called as well. The model is fitted by calling glmFit,
and the specific contrast fitted by calling glmLRT, specifying that the second coefficient be dropped.
Finally, an exactTest (McCarthy et al. [2012]) is performed, using either common or tagwise
dispersion depending on the value specified for bTagwise.

This final DGEList for contrast n is stored in the DBA object as
DBA$contrasts[[n]]$edgeR

and may be examined and manipulated directly for further customization. Note however that
if you wish to use this object directly with edgeR functions, then the bReduceObjects parameter
should be set to FALSE, otherwise the default value of TRUE will result in essential object fields
being stripped.

If a blocking factor has been added to the contrast, an additional edgeR analysis is carried
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out. This follows the DBA_EDGER_GLM case detailed above, except a more complex design matrix
is generated that includes all the unique values for the blocking factor. These coefficients are all
included in the glmLRT call. The resultant object is accessible as

DBA$contrasts[[n]]$edgeR$block.

7.4 DESeq analysis

When dba.analyze is invoked using method=DBA_DESEQ5, a standardized differential analysis is
performed using the DESeq package (Anders and Huber [2010]). This section details the precise
steps in that analysis.

For each contrast, a separate analysis is performed. First, a matrix of counts is constructed
for the contrast, with columns for all the samples in the first group, followed by columns for all
the samples in the second group. The raw read count is used for this matrix; if the bSubControl

parameter is set to TRUE (as it is by default), the raw number of reads in the control sample (if
available) will be subtracted. Next the library size is computed for each sample for use in subsequent
normalization. By default, this is the total number of reads in peaks (the sum of each column).
Alternatively, if the bFullLibrarySize parameter is set to TRUE, the total number of reads in the
library (calculated from the source BAM/BED file) is used. The first step concludes with a call to
DESeq’s newCountDataSet function, which returns a CountDataSet object. If bFullLibrarySize
is set to TRUE, then sizeFactors is called with the number of reads in the BAM/BED files for
each ChIP sample, divided by the minimum of these; otherwise, estimateSizeFactors is invoked.
Next, estimateDispersions is called with the CountDataSet object and fitType set to local.
If there are no replicates, (only one sample in each group), method is set to blind. Otherwise, if
bTagwise is TRUE, method is set to per-condition; if it is FALSE, method is set to pooled (or
pooled-CR for a blocking analysis).

If the method is DBA_DESEQ_CLASSIC, nbinomTest is called, and the result (reordered by ad-
justed p-value) saved for reporting.

If the method is DBA_DESEQ_GLM (the default), two models are fitted using fitNbinomGLMs: a
full model is fitted with all the coefficients, and a second model is fitted with the second coefficient
dropped. These are tested against each other using nbinomGLMTest, with the resulting p values
adjusted using p.adjust (with method="BH").

The final results are acessible within the DBA object as
DBA$contrasts[[n]]$DESeq$DEdata

and may be examined and manipulated directly for further customization. Note however that
if you wish to use this object directly with DESeq functions, then the bReduceObjects parameter
should be set to FALSE, otherwise the default value of TRUE will result in essential object fields
being stripped.

If a blocking factor has been added to the contrast, an additional DESeq analysis is carried out.
This follows the DBA_DESEQ_GLM case detailed above, except a more complex design is generated

5Note that DESeq can be made the default analysis method for a DBA object by setting
DBA$config$AnalysisMethod=DBA_DESEQ.
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when newCountDataSet is called that includes all the unique values for the blocking factor. These
coefficients are all included in the fitNbinomGLMs calls. The resultant object is accessible as

DBA$contrasts[[n]]$DESeq$block.

8 Vignette Data

Due to space limitations, the aligned reads associated with the cell line data use dint his vignette
are not included as part of the DiffBind package.

If you would like to get access to the reads, you can email rory.stark@cruk.cam.ac.uk and
ask to be added to the Dropbox containing the vignette data.

Alternatively, you can use all of the original data archived at GEO. A script is included with
the package that will download the data. This can be run by executing:

> source(file.path(system.file("extra", package="DiffBind"),"tamoxifen_GEO.R"))

Note that the data are more than 20 GB in size, and that this script can take a very long time
to run (it took me about 12 hours). You may have a more efficient way to download these files
from GEO.

Also included is a sample sheet that uses the downloaded data. This sample sheet can also be
examined to see which GEO accession IDs correspond to which samples. The sample sheet will be
copied into your working directory when you execute the above script; otherwise it can be found
at:

> cat(file.path(system.file("extra", package="DiffBind"),"tamoxifen_GEO.csv"))
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10 Setup

This vignette was built on:

> sessionInfo()
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R version 3.0.0 (2013-04-03)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] DESeq_1.12.0 lattice_0.20-15 locfit_1.5-9.1

[4] DiffBind_1.6.2 Biobase_2.20.0 GenomicRanges_1.12.2

[7] IRanges_1.18.0 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.22.3 DBI_0.2-6 KernSmooth_2.23-10

[4] MASS_7.3-26 RColorBrewer_1.0-5 RSQLite_0.11.3

[7] XML_3.96-1.1 amap_0.8-7 annotate_1.38.0

[10] edgeR_3.2.3 gdata_2.12.0.2 genefilter_1.42.0

[13] geneplotter_1.38.0 gplots_2.11.0.1 grid_3.0.0

[16] gtools_2.7.1 limma_3.16.2 splines_3.0.0

[19] stats4_3.0.0 survival_2.37-4 tools_3.0.0

[22] xtable_1.7-1 zlibbioc_1.6.0
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