\name{Methods for objects of class 'mlePT'} \alias{print.mlePT} \alias{logLik.mlePT} \alias{confint.mlePT} \title{ Methods for objects of class 'mlePT' } \description{ print, extract loglikelihood or compute confidence interval for an object of class 'mlePT'. } \usage{ \method{print}{mlePT}(x, digits = 3, ...) \method{logLik}{mlePT}(object, ...) \method{confint}{mlePT}(object, parm, level = 0.95, ...) } \arguments{ \item{x}{ object of class 'mlePT'. } \item{object}{ object of class 'mlePT'. } \item{digits}{ integer scalar giving the number of digits to be rounded the solution. } \item{parm}{ a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. } \item{level}{ the confidence level required (default is 0.95). } \item{\dots}{ additional arguments. } } \value{ 'logLik' returns the loglikelihood of the selected model. 'confint' returns a matrix (or vector) with columns giving lower and upper confidence limits for each parameter. } \seealso{ \code{\link{mlePoissonTweedie}} } \examples{ # Load and aggregate the 'seizure' database data(seizure) aggCounts <- aggregate(x = cbind(seizure$count, seizure$trx), by = list(seizure$id), FUN = sum) # Estimate the parameters mleSeizure <- mlePoissonTweedie(x = aggCounts[,2], a.ini = 0, D.ini = 10) # Print mleSeizure # Extract loglikelihood logLik(mleSeizure) # Compute confidence inerval confint(mleSeizure) } \keyword{methods}