\docType{methods} \name{mt} \alias{mt} \alias{mt,otuTable,character-method} \alias{mt,otuTable,factor-method} \alias{mt,otuTable,integer-method} \alias{mt,otuTable,logical-method} \alias{mt,otuTable,numeric-method} \alias{mt,phyloseq,ANY-method} \title{Multiple testing of taxa abundance acccording to sample categories/classes} \usage{ mt(physeq, classlabel, minPmaxT="minP", ...) } \arguments{ \item{physeq}{(Required). \code{\link{otuTable-class}} or \code{\link{phyloseq-class}}. In this multiple testing framework, different taxa correspond to variables (hypotheses), and samples to observations.} \item{classlabel}{(Required). A single character index of the sample-variable in the \code{\link{sampleData}} of \code{physeq} that will be used for multiple testing. Alternatively, \code{classlabel} can be a custom integer (or numeric coercable to an integer), character, or factor with length equal to \code{nsamples(physeq)}. NOTE: the default test applied to each taxa is a two-sample two-sided \code{\link{t.test}}, WHICH WILL FAIL with an error if you provide a data variable (or custom vector) that contains MORE THAN TWO classes. One alternative to consider is an F-test, by specifying \code{test="f"} as an additional argument. See the first example below, and/or further documentation of \code{\link[multtest]{mt.maxT}} or \code{\link[multtest]{mt.minP}} for other options and formal details.} \item{minPmaxT}{(Optional). Character string. \code{"mt.minP"} or \code{"mt.maxT"}. Default is to use \code{\link[multtest]{mt.minP}}.} \item{...}{(Optional). Additional arguments, forwarded to \code{\link[multtest]{mt.maxT}} or \code{\link[multtest]{mt.minP}}} } \value{ A dataframe with components specified in the documentation for \code{\link[multtest]{mt.maxT}} or \code{\link[multtest]{mt.minP}}, respectively. } \description{ Multiple testing of taxa abundance acccording to sample categories/classes } \examples{ # ## # Simple example, testing genera that sig correlate with Enterotypes ## data(enterotype) ## # Filter samples that don't have Enterotype ## x <- subset_samples(enterotype, !is.na(Enterotype)) ## # (the taxa are at the genera level in this dataset) ## mt(x, "Enterotype", test="f") ## # Not surprisingly, Prevotella and Bacteroides top the list. ## # Different test, multiple-adjusted t-test, whether samples are ent-2 or not. ## mt(x, getVariable(x, "Enterotype")==2) } \seealso{ \code{\link[multtest]{mt.maxT}}, \code{\link[multtest]{mt.minP}} }