\name{estimate_richness} \alias{estimate_richness} \title{Summarize richness estimates} \usage{ estimate_richness(physeq, split=TRUE) } \arguments{ \item{physeq}{(Required). \code{\link{phyloseq-class}}, or alternatively, an \code{\link{otuTable-class}}. The data about which you want to estimate the richness.} \item{split}{(Optional). Logical. Should a separate set of richness estimates be performed for each sample? Or alternatively, pool all samples and estimate richness of the entire set.} } \value{ A \code{data.frame} of the richness estimates, and their standard error. } \description{ Performs a number of standard richness estimates, and returns the results as a \code{data.frame}. Can operate on the cumulative population of all samples in the dataset, or by repeating the richness estimates for each sample individually. NOTE: You must use untrimmed datasets for meaningful results, as these estimates (and even the ``observed'' richness) are highly dependent on the number of singletons. You can always trim the data later on if needed, just not before using this function. } \examples{ data(GlobalPatterns) ( S.GP <- estimate_richness(GlobalPatterns) ) # # Make the plots # plot_richness_estimates(GlobalPatterns, "SampleType") # plot_richness_estimates(GlobalPatterns, "SampleType", "SampleType") # For more plotting examples, see plot_richness_estimates() } \seealso{ Check out the custom plotting function, \code{\link{plot_richness_estimates}}, for easily showing the results of different estimates, with method-specific error-bars. Also check out the internal functions borrowed from the \code{vegan} package: \code{\link[vegan]{estimateR}}, \code{\link[vegan]{diversity}} }