\name{gsea.kegg} \alias{gsea.kegg} \alias{gsea.go} \docType{data} \title{ Perform Gene Set Enrichment Analysis (GSEA) of Gene Ontologies (GO) and Kegg gene sets. } \description{ The function obtains the GO or Kegg gene sets and perfomrs GSEA analysis as implemented in the \code{gsea} function. } \usage{ gsea.go(x,species='Hs', ontologies='MF', logScale=TRUE, absVals=FALSE, averageRepeats=FALSE, B=1000, mc.cores=1, test="perm", p.adjust.method="none", pval.comp.method="original", pval.smooth.tail=TRUE,minGenes=10,maxGenes=500,center=FALSE) gsea.kegg(x,species='Hs', logScale=TRUE, absVals=FALSE, averageRepeats=FALSE, B=1000, mc.cores=1, test="perm", p.adjust.method="none", pval.comp.method="original", pval.smooth.tail=TRUE,minGenes=10,maxGenes=500,center=FALSE) } \arguments{ \item{x}{ \code{ePhenoTest}, \code{numeric} or \code{matrix} object containing scores (hazard ratios or fold changes).} \item{species}{ a single character value specifying the species: "Dm" ("Drosophila_ melanogaster"), "Hs" ("Homo_sapiens"), "Rn" ("Rattus_norvegicus"), "Mm" ("Mus_musculus") or "Ce" ("Caenorhabditis_elegans")).} \item{ontologies}{ a single character value or a character vector specifying an ontology or multiple ontologies. The current version provides the following choices: "BP", "CC" and "MF"} \item{logScale}{ if values should be log scaled.} \item{absVals}{ if TRUE fold changes and hazard ratios that are negative will be turned into positive before starting the process. This is useful when genes can go in both directions.} \item{averageRepeats}{ if x is of class numeric and has repeated names (several measures for some indivdual names) we can average the measures of the same names.} \item{B}{ number of simulations to perform.} \item{mc.cores}{ number of processors to use.} \item{test}{ the test that will be used. 'perm' stands for the permutation based method, 'wilcox' stands for the wilcoxon test (this is the fastest one) and 'ttperm' stands for permutation t test.} \item{p.adjust.method}{ p adjustment method to be used. Common options are 'BH', 'BY', 'bonferroni' or 'none'. All available options and their explanations can be found on the \code{p.adjust} function manual.} \item{pval.comp.method}{ the p value computation method. Has to be one of 'signed' or 'original'. The default one is 'original'. See details for more information.} \item{pval.smooth.tail}{ if we want to estimate the tail of the ditribution where the pvalues will be generated.} \item{minGenes}{ gene sets with less than minGenes genes will be removed from the analysis.} \item{maxGenes}{ gene sets with more than maxGenes genes will be removed from the analysis.} \item{center}{ if we want to center scores (fold changes or hazard ratios). The following is will be done: x = x-mean(x).} } \details{ This function relies on the following packages: GSEABase, GO.db. For more information about how the gene sets are obtained see the man page of the functions \code{getGo} and/or \code{getKegg}. For more information about the implemented GSEA see the man page of th function \code{gsea}. } \value{ a list of gene sets, with names as GO pathway IDs. Each gene set is a character vector of Entrez gene identifiers. } \author{ Evarist Planet. } \seealso{ getGo } \examples{ ##load libs #library(KEGG.db) #library(org.Hs.eg.db) ##get data #data(eset.genelevel) #eset.genelevel ##prepare vars2test #survival <- matrix(c("Relapse","Months2Relapse"),ncol=2,byrow=TRUE) #colnames(survival) <- c('event','time') #vars2test <- list(survival=survival,categorical='ER.Status') ##run ExpressionPhenoTest #epheno <- ExpressionPhenoTest(eset.genelevel,vars2test,p.adjust.method='none') #epheno ##run gsea with kegg gene sets. #gseaData <- gsea.kegg(epheno[,1],'Hs') #summary(gseaData) #plot(gseaData[[1]],gseaData[[2]],selGsets='hsa04062') } \keyword{ ~kwd1 }