\name{plotCpg} \alias{plotCpg} \title{ Plot methylation values at an single genomic position } \description{ Plot single-position (single CpG) methylation values as a function of a categorical or continuous phenotype } \usage{ plotCpg(dat, cpg, pheno, type = c("categorical", "continuous"), measure = c("beta", "M"), ylim = NULL, ylab = NULL, xlab = "", fitLine = TRUE, mainPrefix = NULL, mainSuffix = NULL) } \arguments{ \item{dat}{An \code{RGChannelSet}, a \code{MethylSet} or a \code{matrix}. We either use the \code{getBeta} (or \code{getM} for \code{measure="M"}) function to get Beta values (or M-values) (for the first two) or we assume the matrix contains Beta values (or M-values).} \item{cpg}{A character vector of the CpG position identifiers to be plotted.} \item{pheno}{A vector of phenotype values.} \item{type}{Is the phenotype categorical or continuous?} \item{measure}{Should Beta values or log-ratios (M) be plotted?} \item{ylim}{y-axis limits.} \item{ylab}{y-axis label.} \item{xlab}{x-axis label.} \item{fitLine}{Fit a least-squares best fit line when using a continuous phenotype.} \item{mainPrefix}{Text to prepend to the CpG name in the plot main title.} \item{mainSuffix}{Text to append to the CpG name in the plot main title.} } \details{ This function plots methylation values (Betas or log-ratios) at individual CpG loci as a function of a phenotype. } \value{ No return value. Plots are produced as a side-effect. } \author{ Martin Aryee \email{aryee@jhu.edu}. } \examples{ if (require(minfiData)) { grp <- pData(MsetEx)$Sample_Group cpgs <- c("cg00050873", "cg00212031", "cg26684946", "cg00128718") par(mfrow=c(2,2)) plotCpg(MsetEx, cpg=cpgs, pheno=grp, type="categorical") } }