\name{readSpfabiaResult} \alias{readSpfabiaResult} \title{Factor Analysis for Bicluster Acquisition: Read Results of SpFabia} \description{ \code{readSpfabiaResult}: C implementation of \code{readSpfabiaResult}. } \usage{ readSpfabiaResult(X) } \arguments{ \item{X}{the file prefix name of the result files of spfabia.} } \details{ Read the results of spfabia. The code is implemented in C. } \value{ \item{}{object of the class \code{Factorization}. Containing \code{L} (loadings \eqn{L}), \code{Z} (factors \eqn{Z}), \code{Psi} (noise variance \eqn{\sigma}), \code{lapla} (variational parameter), \code{avini} (the information which the factor \eqn{z_{ij}} contains about \eqn{x_j} averaged over \eqn{j}) \code{xavini} (the information which the factor \eqn{z_{j}} contains about \eqn{x_j}) \code{ini} (for each \eqn{j} the information which the factor \eqn{z_{ij}} contains about \eqn{x_j}). } } \seealso{ \code{\link{fabia}}, \code{\link{fabias}}, \code{\link{fabiap}}, \code{\link{spfabia}}, \code{\link{readSamplesSpfabia}}, \code{\link{readSpfabiaResult}}, \code{\link{fabi}}, \code{\link{fabiasp}}, \code{\link{mfsc}}, \code{\link{nmfdiv}}, \code{\link{nmfeu}}, \code{\link{nmfsc}}, \code{\link{plot}}, \code{\link{extractPlot}}, \code{\link{extractBic}}, \code{\link{plotBicluster}}, \code{\link{Factorization}}, \code{\link{projFuncPos}}, \code{\link{projFunc}}, \code{\link{estimateMode}}, \code{\link{makeFabiaData}}, \code{\link{makeFabiaDataBlocks}}, \code{\link{makeFabiaDataPos}}, \code{\link{makeFabiaDataBlocksPos}}, \code{\link{matrixImagePlot}}, \code{\link{summary}}, \code{\link{show}}, \code{\link{showSelected}}, \code{\link{fabiaDemo}}, \code{\link{fabiaVersion}} } \author{Sepp Hochreiter} \references{ S. Hochreiter et al., \sQuote{FABIA: Factor Analysis for Bicluster Acquisition}, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227 } \keyword{methods} \keyword{multivariate} \keyword{cluster} \concept{biclustering} \concept{factor analysis} \concept{sparse coding} \concept{Laplace distribution} \concept{EM algorithm} \concept{non-negative matrix factorization} \concept{multivariate analysis} \concept{latent variables}