\name{removeFlatGenes} \alias{removeFlatGenes} \title{ Flags a set of genes which demonstrates little variation across the celltypes or experimental groups of interest. } \description{ This function uses a linear model set up in \code{limma} to assess the degree of association between celltype and a gene's expression profile. In this way, we can flag those genes whose profiles show very little change across different celltype groups, or in other words are "flat". } \usage{ removeFlatGenes(eSet, cellTypeTag, contrasts = NULL, limma.cutoff = 0.05, ...) } \arguments{ \item{eSet}{ \code{ExpressionSet} object. } \item{cellTypeTag}{ character string of the variable name which stores the cell-lineages or experimental groups of interest for the samples in the data set (this string should be one of the column names of pData(myEset)). } \item{contrasts}{ optional vector of contrasts that specify the comparisons of interest. By default, all comparisons between the differnt groups are generated. } \item{limma.cutoff}{ numeric specifying the P-value cutoff. Genes with P-values greater than this value are considered "flat" and will be included in the set of flat genes. } \item{\dots}{ additional arguments. } } \details{ Flat genes are removed from the analysis after the core attractor pathway modules are first inferred (i.e. the \code{findAttractors} step). } \value{ A \code{vector} with gene names (as defined in the eset) of those genes with expression profiles that hardly vary across different celltype or experimental groups. } \references{ \code{limma} package. Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, No. 1, Article 3. } \author{ Jessica Mar } \examples{ data(subset.loring.eset) remove.these.genes <- removeFlatGenes(subset.loring.eset, "celltype", contrasts=NULL, limma.cutoff=0.05) } \keyword{methods}