\name{sample.probeset} \alias{sample.probeset} \title{Toydata generator for probeset data.} \description{Generate random probeset with varying probe-specific affinities and variances.} \usage{ sample.probeset(P = 10, n = 20, shape = 1, scale = 1, mu.real = 2) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{P}{Number of probes.} \item{n}{Number of samples.} \item{shape, scale}{Shape and scale parameters of the inverse Gamma function used to generate the probe-specific variances.} \item{mu.real}{Absolute signal level of the probeset.} } \details{The toy data generator follows distributional assumptions of the RPA model and allows quantitative estimation of model accuracy with different options, noise levels and sample sizes. Probeset-level summary estimate is obtained as mu.real + d.} \value{ A list with the following elements: \item{dat }{Probeset data: probes x samples} \item{variance }{Probe variances.} \item{affinity }{Probe affinities.} \item{d }{Probeset-level signal shape.} \item{mu.real }{Probeset-level absolute signal level.} } \references{See citation("RPA").} \author{Leo Lahti \email{leo.lahti@iki.fi}} \examples{ real <- sample.probeset(P = 10, n = 20, shape = 1, scale = 1, mu.real = 2) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ utilities }