\name{s2.update} \alias{s2.update} \title{Variance update.} \description{Update variance parameters in the Bayesian RPA model with an EM-type optimization procedure and potentially informative priors.} \usage{ s2.update(dat, alpha = 1e-2, beta = 1e-2, s2.init = NULL, th = 0.01) } \arguments{ \item{dat}{A probes x samples matrix (probeset).} \item{alpha, beta}{Shape and scale parameters of the inverse gamma prior for the variances.} \item{s2.init}{Initial values for the variances for optimization.} \item{th}{Optimization convergence threshold.} } \details{Updates the variance parameters in the Bayesian RPA model with a (generalized) EM-type optimization procedure and potentially informative priors. The variances are updated by their mode at each step until convergence. Priors (alpha, beta) are taken into account if provided.} \value{A vector of variance parameters, one for each probe.} \references{See citation("RPA").} \author{Leo Lahti \email{leo.lahti@iki.fi}} %\note{} \seealso{rpa.online} \examples{ # dat: probes x samples matrix (probeset) # s2 <- s2.update(dat) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ iteration }