\name{logrnk} \alias{logrnk} \title{ Performs Log Rank test on the long and short patient sets } \description{ This function performs a Chi-square test on the long and short subject sets to determine if their is a significant difference between the survival times in both sets. It returns the p-value. } \usage{ logrnk(dataL, dataS) } \arguments{ \item{dataL}{ The set of subjects predicted to fall into the long-survivor set. A data frame containing at least the following columns: ``PatientOrderValidation'' (the number/order of the subject); ``group'' (the group into which the patient falls L (for long) or S(for short)); ``censored'' (the censorship status of the patient $1$ for uncensored and $0$ for censored). } \item{dataS}{ Same as ``dataL'' but for the set of short survivors. } } \details{ Note that the typical arguments to be passed are the results of the ``STpredict'' functions ``long\_survivors'' and ``long\_survivors'' } \value{ The estimated p-value is returned } \references{ Bland JM, Altman DG. Survival probabilities (the Kaplan-Meier method). \emph{BMJ} 2004;328;1073 \url{http://www.bmj.com/statsbk/12.dtl} } \author{ Douaa AS Mugahid } \seealso{ \code{\link{survivAURC}} } \examples{ PatientOrderValidation_L <- c(1, 2, 3, 5, 7) PatientOrderValidation_S <- c(4, 6, 8) group_L <- rep("L", 5) group_S <- rep("S", 3) censored_L <- c(0, 0, 1, 1, 0) censored_S <- c(0, 0, 1) True_STs_L <- c(5, 6, 6 ,7, 8) True_STs_S <- c(2, 3, 2) short <- as.data.frame(cbind(PatientOrderValidation_S, group_S, censored_S, True_STs_S)) long <- as.data.frame(cbind(PatientOrderValidation_L, group_L, censored_L, True_STs_L)) names(short) <- c("PatientOrderValidation", "group", "censored", "True_STs") names(long) <- c("PatientOrderValidation", "group", "censored", "True_STs") logrnk(dataL=long, dataS=short) } \keyword{ log rank test }