\name{pingList-class} \docType{class} \alias{pingList} \alias{pingList-class} \alias{chromosome,pingList-method} \alias{mu,pingList-method} \alias{delta,pingList-method} \alias{w,pingList-method} \alias{score,pingList-method} \alias{density,pingList-method} \alias{se,pingList-method} \alias{seF,pingList-method} \alias{seR,pingList-method} \alias{[,pingList,ANY,ANY-method} \alias{[[,pingList,ANY,ANY-method} \alias{newPingList,pingList-method} \alias{length} \alias{length,pingList-method} \alias{newPingList} \title{The ping class} \description{ This object is used to gather all parameters from fitting PING to multiple candidate regions (as returned by the 'segmentReads' function). The objet contains the following slots: 'List', 'paraPrior', 'paraEM', 'minReads', 'N', 'Nc'. 'List' is a list of 'ping' or 'pingError' objects. 'paraPrior' is a list containing the hyperparameters used for the prior, 'paraEM' is a list of convergence parameters for the EM, 'minReads' is a list containing the minimum number of reads used to fit a region with 'PING', 'N' is the total number of reads in the ChIP samples while 'Nc' is the total number of reads in the control sample. } \section{Accessors}{ The PING package provide accessors to directly access to most of the parameters/standard errors and chromosomes. In the code snippets below, 'x' is a 'pingList' object. For all accessors, the 'pingError' objects are omitted, so that the accessors only return values for the 'ping' objects (i.e. all valid binding events). \describe{ \item{'chromosome(x)'}{Gets the chromosome names of all candidate regions.} \item{'mu(x)'}{Gets the position estimates of all binding sites identified in all candidate regions.} \item{'delta(x)'}{Gets the average fragment lengths of all binding sites identified in all candidate regions.} \item{'sigmaSqF(x)'}{Gets the F peak variances of all binding sites identified in all candidate regions.} \item{'sigmaSqR(x)'}{Gets the R peak variances of all binding sites identified in all candidate regions.} \item{'seF(x)'}{Gets the standard errors of all binding site position estimates identified in all candidate regions.} \item{'seF(x)'}{Gets the standard errors of all F peak modes identified in all candidate regions.} \item{'seR(x)'}{Gets the standard errors of all R peak modes identified in all candidate regions.} \item{'score(x)'}{Gets the scores of all binding events identified in all candidate regions.} } } \section{Constructor}{ newPingList(List, paraEM, paraPrior, minReads, N, Nc) \describe{ \item{List}{The mixture weights (a vector)} \item{paraEM}{The binding site positions (a vector)} \item{paraPrior}{The DNA fragment lengths (a vector)} \item{N}{The variance parameters for the forward distribution (vector)} \item{Nc}{The variance parameters for the forward distribution (vector)} } } \section{Methods}{ \describe{ \item{[}{\code{signature(x = "ping")}: subset PING object.} } } \section{Methods}{ \describe{ \item{length}{\code{signature(x = "ping")}: subset PING object.} } } \arguments{ \item{object}{An object of class \code{ping}.} } \section{Constructor}{ newPingList<-function(List, paraEM, paraPrior, minReads, N, Nc) constructs a new 'pingList' object with the following arguments. \describe{ \item{newPingList}{} \item{w}{The mixture weights (a vector)} \item{mu}{The binding site positions (a vector)} \item{delta}{The DNA fragment lengths (a vector)} \item{sigmaSqF}{The variance parameters for the forward distribution (vector)} \item{sigmaSqR}{The variance parameters for the reverse distribution (vector)} \item{seMu}{The standard errors for mu (vector)} \item{seMuF}{The standard errors for muF (vector)} \item{seMuR}{The standard errors for muR (vector)} \item{seMuR}{The standard errors for muR (vector)} \item{score}{The scores for each binding event (vector)} \item{Nmerged}{The number of peaks that were merged (integer)} \item{converge}{A logical value, TRUE, if the EM as converged} \item{infMat}{The information matrix} \item{chr}{The chromosome for the region} } } \author{ Xuekui Zhang <\email{xzhang@stat.ubc.ca}>, Sangsoon Woo, \email{swoo@fhcrc.org} and Raphael Gottardo <\email{raphael.gottardo@ircm.qc.ca}> } \references{ Xuekui Zhang, Gordon Robertson, Sangsoon Woo, Brad G. Hoffman, and Raphael Gottardo, "Probabilistic Inference for Nucleosome Positioning with MNase-based or Sonicated Short-read Data" PlosONE, under review. } \seealso{ \code{\link{ping}} } \examples{ # Here is an example of how to construct such a region # Typically, you would not do this manually, you would use the ping function to return a 'pingList' that contains a list of 'ping' or 'pingError' object. w<-1 mu<-10000 delta<-150 sigmaSqF<-5000 sigmaSqR<-5000 seMu<-10 seMuF<-10 seMuR<-10 score<-5 Nmerged<-0 converge<-TRUE infMat<-matrix(0) chr<-"chr1" range<-c(1000,2000) # Contructor #myPING1<-newPing(w,mu,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,infMat,as.integer(range),chr) #myPING2<-newPing(w,mu+1000,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,infMat,as.integer(range),chr) #minReads<-list(perPeak=2,perRegion=5) #paraPrior<-list(xi=200,rho=1,alpha=20,beta=40000) #paraEM<-list(minK=1,maxK=15,tol=10e-6,B=100) #N<-100 #Nc<-200 #mynewPingList<-newPingList(list(myPING1,myPING2), paraEM, paraPrior, minReads, as.integer(100), as.integer(200)) # Accessors # Get the standard error of Mu #se(mynewPingList) # Get the standard error of MuF #seF(mynewPingList) # Get the scores #score(mynewPingList) } \keyword{models}