%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Do not modify this file since it was automatically generated from: % % mixture.R % % by the Rdoc compiler part of the R.oo package. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \name{Mixture} \docType{class} \alias{Mixture} \encoding{latin1} \title{The Mixture class} \description{ Package: \cr \bold{Class Mixture}\cr \code{\link[R.oo]{Object}}\cr \code{~~|}\cr \code{~~+--}\code{Mixture}\cr \bold{Directly known subclasses:}\cr \cr public static class \bold{Mixture}\cr extends \link[R.oo]{Object}\cr The constructor creates a model from a single Corr object using the number of clusters defined by G determining the optimal number of clusters by default and optionally using the Fisher transform. } \usage{Mixture(corr=NULL, G=c(1:5), Fisher=FALSE, verbose=FALSE, ...)} \arguments{ \item{corr}{ Corr object on wich mixture modeling is performed.} \item{G}{ number of components in mixture model. If G is a vector, the optimal number of components is determined. G is a vector (1:5) by default.} \item{Fisher}{ if \code{\link[base:logical]{TRUE}}, the Fisher transform of correlation data is performed before the model is fitted. Default is \code{\link[base:logical]{FALSE}}.} \item{verbose}{if \code{\link[base:logical]{TRUE}} enables diagnostic messages. Default is \code{\link[base:logical]{FALSE}}.} \item{...}{Not used.} } \value{ The resulting Mixture object encapsulates a data member '.model' containing the results of mixture modeling represented by the \code{\link[base]{list}} with following components: \item{corr}{the correlation data} \item{clust}{the clustering results data structure returned by Mclust()} \item{sd}{standard deviation derived from clust$parameters$variance$sigmasq} \item{density}{the correlation density distribution} \item{marginalDensity}{the marginal density} } \section{Fields and Methods}{ \bold{Methods:}\cr \tabular{rll}{ \tab \code{\link[IdMappingAnalysis:clust.Mixture]{clust}} \tab Retrieve the custering results data structure.\cr \tab \code{\link[IdMappingAnalysis:getData.Mixture]{getData}} \tab Extract mixture component data from the Mixture object.\cr \tab \code{\link[IdMappingAnalysis:getStats.Mixture]{getStats}} \tab Get mixture component model summary info.\cr \tab \code{\link[IdMappingAnalysis:plot.Mixture]{plot}} \tab Plot the results of mixture modeling.\cr \tab \code{\link[IdMappingAnalysis:primaryKey.Mixture]{primaryKey}} \tab Retrieves a primary key for a given Mixture object.\cr \tab \code{\link[IdMappingAnalysis:secondaryKey.Mixture]{secondaryKey}} \tab Retrieves a secondary key for a given Mixture object.\cr } \bold{Methods inherited from Object}:\cr $, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clone, detach, equals, extend, finalize, gc, getEnvironment, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, registerFinalizer, save } \examples{ mixture<-Mixture(examples$corr,G=c(1:4),Fisher=TRUE,verbose=TRUE); class(mixture); names(mixture$.model) } \author{Alex Lisovich, Roger Day} \keyword{classes}