\name{mcmc.defaultParams_nonLinear} \alias{mcmc.defaultParams_nonLinear} \title{Default Parameters for non-Linear Model} \description{ Create parameter vector with default parameters for NonLinearNet function } \usage{ mcmc.defaultParams_nonLinear() } \details{ Use this function to generate a template parameter vector to use non-default parameters for the NonLinearNet model. } \value{ Returns a single vector with the following elements (in this order): \item{(1) samples}{Number of MCMC iterations to run.} \item{(2) burn.in}{Number of initial iterations to discard as burn in.} \item{(3) thin}{Subsampling frequency} \item{(4) c}{Shape parameter 1 for Beta(c,d) prior on rho (connectivity parameter)} \item{(5) d}{Shape parameter 2 for Beta(c,d) prior on rho (connectivity parameter)} \item{(6) trunc}{Truncation parameter for InvertedPareto prior on tau (smoothness parameter)} \item{(7) tau0}{Precision parameter for N(0, tau0^(-0.5)) prior on B (first two coefficients)} \item{(8) M}{Numer of knots used for each spline function} \item{(9) a}{Shape parameter for Gamma(a,b) prior on lambda (Regression precision)} \item{(10) b}{Rate parameter for Gamma(a,b) prior on lambda (Regression precision)} \item{(11) sigma.mu}{Standard deviation parameter for N(0,sigma.mu) prior on mu (Regression intercept)} \item{(12) a_pareto}{Pareto parameter for InvertedPareto prior on tau (smoothness parameter)} } \references{ Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009 } \seealso{ \code{\link{plotPriors}}, \code{\link{NonLinearNet}}. } \keyword{NonLinearNet} \examples{ # Get default parameters nonLinearNet.params <- mcmc.defaultParams_nonLinear() # Change run length nonLinearNet.params[1] <- 150000 # Change prior on smoothness parameter nonLinearNet.params[6] <- 30000 # Change truncation nonLinearNet.params[12] <- 3 # Concentrate more mass close to linear region # Plot to check changes plotPriors(nonLinearNet.params) ## Use to run LinearNet ... }