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1 Introduction

The Iterative Signature Algorithm (ISA) is a biclustering method, it finds
consistent blocks (modules, biclusters) in tabular data, e.g. gene expression
measurements across a number of samples. Please see the introductory tutori-
als at the ISA homepage, http://www.unil.ch/cbg/ISA, and also [Bergmann et al., 2003]
for details.

In this document we specifically deal with the implementation of the ISA
in the isa2 and eisa R packages.

2 Why two packages?

We implemented the ISA in two R packages, isa2 and eisa. ISA is a very
general algorithm, that can be used for any tabular data to find correlated
blocks. Examples for such tabular data are gene expression [Ihmels and Bergmann, 2004],
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response of different cell lines to a number of drugs [Kutalik et al., 2008]. It
can also be used as a general classifier, for biological or other data.

It is also true, however, that the ISA is frequently used for gene expres-
sion analysis.

Thus, we decided to provide two different user interfaces to the ISA. One
interface, provided by isa2 package, is very general, the input of the isa2
functions is a numeric matrix, and the output contains two matrices, defining
the ISA modules. The isa2 package can be used for the modular analysis of
tabular data of any kind, from any source.

The eisa package (the leading ‘e’ stands for expression) provides a sec-
ond interface, for people that specifically deal with gene expression data. This
package builds on the infrastructure created by the BioConductor project
[Gentleman et al., 2004]. The input of the eisa functions is an Expression-
Set object, the standard BioConductor data structure for storing gene expres-
sion data. BioConductor provides functions to create such an ExpressionSet
object from raw data and to download data from public repositories, such as
the Gene Expression Omnibus [Davis and Meltzer, 2007, Barrett et al., 2009]
and transform it into an ExpressionSet. The output of the eisa functions
is an object that contains the ISA modules, the annotation of the genes and
samples in the data set and possibly also further experimental meta data. The
eisa package provides functions for calculating enrichment statistics against
various databases for the ISA modules. The eisa package uses already exist-
ing BioConductor annotation packages, so it works for any organism that is
supported by BioConductor.

Having two ISA packages, however, does not mean two implementations
of the ISA. The eisa package is fully built on top of the services of the isa2
package, only the latter one contains the implementation of the ISA iteration.

The two packages allow ease of installation and use: users dealing with
gene expression data install the eisa package, and this automatically installs
the isa2 package as well. Users analyzing other data install the isa2 package
only, this does not need any BioConductor packages.

The isa2 package is part of the standard R package repository (CRAN),
the eisa package has been accepted as an official BioConductor package and
is included in BioConductor from the 2.6 release, due in April, 2010.

3 Speeding up the ISA iteration

ISA is an unsupervised, iterative, randomized algorithm. It starts with a seed
vector. r0. This vector is an initial guess for the rows of the input matrix that
form a single module. This guess is then refined, by iterating itself and an-
other vector, ci, that defines the columns of the module.

During the iteration, the ISA uses two matrices, Er and Ec, derived from
the input matrix, by standardizing it row-wise and column-wise, respectively.
One step of the ISA iteration involves (1) multiplying Er by rn and then (2)
thresholding the result to keep elements that are further away from its mean
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than a prescribed value, Θc, in standard deviation units. This gives cn+1.
Next, (3) Ec is multiplied by cn+1 and (4) the result is thresholded with Θr.
This gives rn+1.

The iteration is finished if rn+1 is close to rn and cn+1 is close to cn.
Considerable speedup can be achived, if the ISA iteration is performed

in batches of seed vectors, instead of handling them individually. The reason
for this is the availability of the highly optimized linear algebra libraries that
perform matrix-matrix multiplication much faster than all the corresponding
matrix-vector multiplications individually. The seed vectors can be merged
into a seed matrix. This can be done, even if the ISA thresholds are different
for the different seeds, the isa2 and eisa packages support this.

We considered using sparse matrices during the ISA iteration, because
the matrix of seed vectors is sparse, but according to our measurements, sparse
matrices are only marginally faster, and only in some cases. The reason for
this is, that the product of the two matrices is always dense, and gets sparse
only after the thresholding; the dense-sparse matrix multiplication, plus the
conversion to a sparse matrix again, takes about the same time as the dense-
dense matrix multiplication.

Different input seeds converge in different number of steps, in parctice
many seeds tend to converge quickly, and very few seeds need a lot of steps.
Because of this, it is essential to remove the seeds that have already converged,
from the seed matrix, so that only a smaller seed matrix needs to be iterated
for many steps.

As loops are typically slow in R, we implemented the thresholding opera-
tions in C.

4 Running time analysis

In this section we show an experimental running time analysis for our ISA
implementation.

4.1 The hardware and software

The code in the following sections were run under Linux operating system, re-
lease ’2.6.18-238.12.1.el5’, version ‘#1 SMP Tue May 31 13:22:04 EDT 2011’,
on an ‘x86_64’ machine with 12 processors of type ‘Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz’ and 94.28 GiB memory.

4.2 Getting the data

We use subsets of the same data set for the test, this is a data set that is
publicly available in the Gene Expression Omnibus (GEO) repository, its id
is GSE18858. Note, that for the analysis of gene expression data, the eisa
package is a better choice. It makes sense, however, if this tutorial can be run
without any BioConductor packages, so we will use the isa2 package.
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The non-normalized data set of the experiment is available from GEO as
a numeric matrix. To spare time and bandwidth, we only download it once,
even if the code of this tutorial is run multiple times. We store the data file in
the current local directory. If the file is already there, then there is nothing to
do.

> GEO <- "GSE18858"

> GEOfile <- paste(sep = "", GEO, "_series_matrix.txt.gz")

> GEOurl <- paste(sep = "", "ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/",

GEO, "/", GEOfile)

> if (!file.exists(GEOfile)) {

download.file(GEOurl, GEOfile)

}

Next, we are read in the data. Lines that are part of the file header start
with an exclamation mark in GEO files, so we skip them by setting the comment.char
argument of read.table(). The table has a header, the first lines are the
sample names; it also has the probeset names in the first column, we use these
as row names.

> data <- read.table(gzfile(GEOfile), comment.char = "!",

header = TRUE, row.names = 1)

> data <- as.matrix(data)

Let’s check the size of the data matrix.

> dim(data)

[1] 45101 242

It has 45101 rows (=probesets) and 242 columns.
We load the isa2 package, to perform the ISA. No BioConductor pack-

ages are needed.

> library(isa2)

4.3 Measuring running time

We define a simple function first, that runs the various steps of the ISA toolchain
and measures the running time of each step. We use the system.time() func-
tion for this. The results are returned in table.

> mesISA <- function(E, thr.row, thr.col, no.seeds) {

t1 <- system.time({

NE <- isa.normalize(E)

})

t2 <- system.time({

seeds <- generate.seeds(length = nrow(E),

count = no.seeds)
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})

t3 <- system.time({

mods <- isa.iterate(NE, row.seeds = seeds,

thr.row = thr.row, thr.col = thr.col)

})

t4 <- system.time({

mods2 <- isa.unique(NE, mods)

})

cbind(normalization = t1, seeds.generation = t2,

isa.iteration = t3, module.merge = t4,

full = t1 + t2 + t3 + t4)

}

We quickly test this function, on a small subset of our data, with 1000
rows and 30 columns, chosen randomly.

> mydata <- data[sample(nrow(data), 1000), sample(ncol(data),

30)]

> mesISA(mydata, 3, 3, 100)

normalization seeds.generation isa.iteration
user.self 0.026 0.002 0.163
sys.self 0.000 0.000 0.000
elapsed 0.026 0.001 0.169
user.child 0.000 0.000 0.000
sys.child 0.000 0.000 0.000

module.merge full
user.self 0.008 0.199
sys.self 0.000 0.000
elapsed 0.008 0.204
user.child 0.000 0.000
sys.child 0.000 0.000

The table has one column for each step of the ISA toolchain: normalization,
seed generation, performing the ISA iteration, merging the modules, and there
is a column for the total time of these operations as well. The first row shows
the processor time used by process itself, the second row the time spent in
system calls. In the following we will use the total of both of them to measure
the speed of the implementation.

4.4 Number of rows and columns

First, we increase the number of rows in the data matrix gradually, and mea-
sure the running time of ISA. We do this for variuos (row) thresholds, to see if
the trend is threshold-dependent. The column threshold will be fixed now.

> row.thresholds <- seq(1, 3, by = 0.5)

> col.thresholds <- 2
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We create a function, do.row.thr(), that runs the ISA for fixed thresh-
old parameters, and different number of rows in the data matrix. The func-
tion also does replications, 5 by default.

> no.rows <- seq(5000, min(40000, nrow(data)), by = 5000)

> do.row.thr <- function(thr, rep = 5) {

res <- lapply(no.rows, function(x) {

lapply(1:rep, function(xxx) {

mydata <- data[sample(nrow(data),

x), ]

mesISA(mydata, thr, col.thresholds,

100)

})

})

res

}

We are ready to do the running time measurement now; separately for
each row threshold parameter. This takes about three hours to run, on the
platform mentioned above.

> by.rows <- lapply(row.thresholds, do.row.thr)

Next, we define a function to plot the results, with error bars. Error bars
are not supported by the builtin R plotting functions, so we put them to-
gether from line segments.

> myplot <- function(x, y, sd, xlim = range(x),

ylim = c(min(y - sd), max(y + sd)), xlab = "",

ylab = "", ...) {

plot(NA, type = "n", xlim = xlim, ylim = ylim,

xlab = xlab, ylab = ylab)

xmin <- par("usr")[1]

xr <- par("usr")[2] - xmin

bw <- xr/200

segments(x, y - sd, x, y + sd)

segments(x - bw, y - sd, x + bw, y - sd)

segments(x - bw, y + sd, x + bw, y + sd)

points(x, y, ...)

}

The following two functions calculate the mean and standard deviation of
the running times in the result lists, we will use them later.

> get.mean <- function(xx) {

sapply(xx, function(x) mean(sapply(x, function(y) sum(y[1:2,

5]))))

}
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> get.sd <- function(xx) {

sapply(xx, function(x) sd(sapply(x, function(y) sum(y[1:2,

5]))))

}

We are ready to create a plot, the running times in the function of the
number of rows in the input matrix. The results can be seen in Fig. 1.

> layout(rbind(1:2, 3:4, 5:6))

> for (i in 1:length(row.thresholds)) {

par(mar = c(5, 4, 1, 1) + 0.1)

y <- get.mean(by.rows[[i]])

s <- get.sd(by.rows[[i]])

myplot(no.rows, y, s, type = "b", pch = 20,

xlab = "# of rows", ylab = "running time [s]")

rt <- row.thresholds[i]

text(min(no.rows), max(y + s), substitute(Theta[r] ==

rt, list(rt = rt)), adj = c(0, 1), cex = 1.3)

}

In the following, we perform a similar analysis for the number of columns
in the input matrix. ISA is a symmetric algorithm, rows are treated the same
way as columns. The reason for discussing them separately here, is that gene
expression matrices have usually much more rows than columns and this dif-
ference might affect the running time.

For these runs, the row threshold is fixed and the column threshold changes
from 1 to 3.

> row.thresholds2 <- 2

> col.thresholds2 <- seq(1, 3, by = 0.5)

We create a function to perform all the runs for a given column thresh-
old, with replications five by default.

> no.cols <- seq(30, ncol(data), by = 30)

> do.col.thr <- function(thr, rep = 5) {

res <- lapply(no.cols, function(x) {

lapply(1:rep, function(xxx) {

mydata <- data[, sample(ncol(data),

x)]

mesISA(mydata, row.thresholds2, thr,

100)

})

})

res

}

We are ready to do the measurements. On the above mentioned hardware
configuration, this takes about 4 hours to run, depending on the load of the
system.
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Figure 1: Running time of the ISA, in the function of the number of rows in
the input matrix, for various row thresholds. Crearly, the running time in-
creases linearly with the number of rows, for all row thresholds. It is also true,
that for higher thresholds the running times tend to be smaller, this is be-
cause in these cases more seeds converge quickly to the null vector, and these
don’t need to be iterated further. Each data point is the mean of five runs.
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> by.cols <- lapply(col.thresholds2, do.col.thr)

The mean running times are plotted, the results are shown in Fig. 2.

> layout(rbind(1:2, 3:4, 5:6))

> for (i in 1:length(col.thresholds2)) {

par(mar = c(5, 4, 1, 1) + 0.1)

y <- get.mean(by.cols[[i]])

s <- get.sd(by.cols[[i]])

myplot(no.cols, y, s, type = "b", pch = 20,

xlab = "# of cols", ylab = "running time [s]")

rt <- col.thresholds2[i]

text(min(no.cols), max(y + s), substitute(Theta[c] ==

rt, list(rt = rt)), adj = c(0, 1), cex = 1.3)

}

4.5 Number of seeds

Finally, we also check the running time in the function of the number of start-
ing seeds.

We define three threshold configurations to test. The first has interme-
diate thresholds for both the rows and the columns, the second has a low
threshold for the rows and a high threshold for the columns, the third is the
opposite of the second.

> thr.comb <- list(c(2, 2), c(1, 3), c(3, 1))

> no.seeds <- seq(50, 400, by = 50)

The following function does all the runs for a given threshold combina-
tion. The size of the data matrix is fixed here, 20000 times 100.

> do.no.seeds <- function(thr, rep = 5) {

nr <- min(20000, nrow(data))

nc <- min(100, ncol(data))

res <- lapply(no.seeds, function(x) {

lapply(1:rep, function(xxx) {

mydata <- data[sample(nrow(data),

nr), sample(ncol(data), nc)]

mesISA(mydata, thr[1], thr[2], x)

})

})

res

}

We are ready to do the measurement now.

> by.no.seeds <- lapply(thr.comb, do.no.seeds)

The results are plotted in Fig. 3.
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Figure 2: Running times, in the function of the number of columns in the in-
put matrix, for various column thresholds. Interestingly, the running time can
be considered as independent of the number of columns. This is simply be-
cause the row seed matrix is two orders of magnitude larger than the column
seed matrix, and the former dominates the running time. Each data point is
the mean of five runs.
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Figure 3: The running time, in the function of the number of starting seeds,
for various row and column threshold combinations. Each point is the average
of five ISA runs. The running time is increasing linearly with the number of
seeds.

> layout(rbind(1:2, 3:4))

> for (i in 1:length(thr.comb)) {

par(mar = c(5, 4, 1, 1) + 0.1)

y <- get.mean(by.no.seeds[[i]])

s <- get.sd(by.no.seeds[[i]])

myplot(no.seeds, y, s, type = "b", pch = 20,

xlab = "# of seeds", ylab = "running time [s]")

th <- thr.comb[[i]]

text(min(no.seeds), max(y + s), substitute(paste(Theta[r] ==

r1, ", ", Theta[c] == r2), list(r1 = th[1],

r2 = th[2])), adj = c(0, 1), cex = 1.3)

}

5 Running ISA in parallel

It is trivial to run an ISA analysis in parallel, on a multi-processor machine,
or a computer cluster: one just runs different threshold-combinations and/or
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different seeds on the different processors. The achived speedup is close to lin-
ear, since the ISA iteration step dominates in the toolchain. Please see more
about this on the ISA homepage at http://www.unil.ch/cbg/ISA.

6 Session information

The version number of R and packages loaded for generating this vignette
were:

� R version 2.13.0 (2011-04-13), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, utils

� Other packages: isa2 0.3.1
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