\name{ternaryFit-class} \docType{class} \alias{class:ternaryFit} \alias{ternaryFit-class} \alias{ternaryFit} \alias{ternaryFit-methods} \alias{initialize,ternaryFit-method} \alias{dim,ternaryFit-method} \alias{show,ternaryFit-method} \alias{perturbationObj} \alias{perturbationObj,ternaryFit-method} \alias{steadyStateObj} \alias{steadyStateObj,ternaryFit-method} \alias{degreeObjMin} \alias{degreeObjMin,ternaryFit-method} \alias{graphObjMin} \alias{graphObjMin,ternaryFit-method} \alias{tableObjMin} \alias{tableObjMin,ternaryFit-method} \alias{newScore} \alias{newScore,ternaryFit-method} \alias{minScore} \alias{minScore,ternaryFit-method} \alias{finalTemperature} \alias{finalTemperature,ternaryFit-method} \alias{traces} \alias{traces,ternaryFit-method} \alias{stageCount} \alias{stageCount,ternaryFit-method} \alias{xSeed} \alias{xSeed,ternaryFit-method} \alias{inputParams} \alias{inputParams,ternaryFit-method} \alias{perturbationObj<-} \alias{perturbationObj<-,ternaryFit-method} \alias{steadyStateObj<-} \alias{steadyStateObj<-,ternaryFit-method} \alias{degreeObjMin<-} \alias{degreeObjMin<-,ternaryFit-method} \alias{graphObjMin<-} \alias{graphObjMin<-,ternaryFit-method} \alias{tableObjMin<-} \alias{tableObjMin<-,ternaryFit-method} \alias{newScore<-} \alias{newScore<-,ternaryFit-method} \alias{minScore<-} \alias{minScore<-,ternaryFit-method} \alias{finalTemperature<-} \alias{finalTemperature<-,ternaryFit-method} \alias{traces<-} \alias{traces<-,ternaryFit-method} \alias{stageCount<-} \alias{stageCount<-,ternaryFit-method} \alias{xSeed<-} \alias{xSeed<-,ternaryFit-method} \alias{inputParams<-} \alias{inputParams<-,ternaryFit-method} \title{Ternary Network Fit} \description{This is a class representation of the output of the ternary network fitting algorithm implemented in the function \code{tnetfit}.} \section{Creating Objects}{ While one can create their own objects using the function \code{ternaryFit()}, this is highly discouraged. Typically this class is created by running the \code{tnetfit} function. } \section{Slots}{ \describe{ \item{\code{perturbationObj}:}{a matrix of perturbation experiments. Rows are genes and columns are experiments.} \item{\code{steadyStateObj}:}{a matrix of steady gene expression observations from a perturbation experiment. Rows are genes and columns are experiments.} \item{\code{degreeObjMin}:}{a vector containing the in-degree of each node in the fit achieving the minimum score} \item{\code{graphObjMin}:}{a matrix containing the parents of each node in the fit achieving the minimum score} \item{\code{tableObjMin}:}{a matrix containing the table in the fit achieving the minimum score} \item{\code{newScore}:}{the most recent score} \item{\code{minScore}:}{the minimum score} \item{\code{finalTemperature}:}{the final value of the temperature parameter} \item{\code{traces}:}{a dataframe contain the traces for 4 parameters} \item{\code{stageCount}:}{the number of stages} \item{\code{xSeed}:}{the random seed.} \item{\code{inputParams}:}{the ternaryFitParameters object used.} } } \section{Methods}{ All named elements can be accessed and set in the standard way (e.g. \code{xSeed(object)} and \code{xSeed(object)<-}). } \author{Matthew N. McCall and Anthony Almudevar} \seealso{ \code{tnetpost}, \code{ternaryFitParameters-class}, \code{ternaryPost-class}. Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47. } \examples{ ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3) pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3) rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3") tnfitObj <- tnetfit(ssObj, pObj) class(tnfitObj) } \keyword{classes}